
Link-sharing and Resource Management Models

for Packet Networks

Sally Floyd and Van Jacobson

To appear in IEEE/ACM Transactions on Networking, Vol. 3 No. 4, August 1995

Abstract|
This paper discusses the use of link-sharing mechanisms

in packet networks and presents algorithms for hierarchical
link-sharing. Hierarchical link-sharing allows multiple agen-
cies, protocol families, or tra�c types to share the band-

width on a link in a controlled fashion. Link-sharing and
real-time services both require resource management mech-

anisms at the gateway. Rather than requiring a gateway to
implement separate mechanisms for link-sharing and real-
time services, the approach in this paper is to view link-

sharing and real-time service requirements as simultaneous,
and in some respect complementary, constraints at a gate-
way that can be implemented with a uni�ed set of mecha-

nisms.
While it is not possible to completely predict the re-

quirements that might evolve in the Internet over the next

decade, we argue that controlled link-sharing is an essential
component that can provide gateways with the exibility to
accommodate emerging applications and network protocols.

1 Introduction

Requirements for resource management in the Internet in-

clude both services for real-time tra�c and link-sharing

services. Real-time tra�c is characterized by a (�xed or

adaptive) playback time at the receiver; real-time pack-

ets arriving at the receiver after the playback time are

discarded. In a congested network, resource management

mechanisms are required at the gateway to meet realtime

tra�c requirements for controlled delay and limited packet

drops. While there has been an abundance of research

about the needs of real-time tra�c, link-sharing services

have received somewhat less attention in the research com-

munity.

The approach to controlled link-sharing described in this

paper has evolved in the context of the Internet. Be-

cause the Internet is decentralized in nature, composed

of multiple administrative domains with a wide range of

resource limitations, the control of Internet resources in-

volves local decisions on usage as well as considerations of

per-connection end-to-end requirements. One function of

link-sharing mechanisms is to enable gateways to control

the distribution of bandwidth on local links in response to

purely local needs. By allowing isolation between real-time

and best-e�ort tra�c in cooperation with packet schedul-

ing algorithms that give priority to the real-time tra�c,

S. Floyd and V. Jacobson are both with the Network Research Group,
Lawrence Berkeley Laboratory, Berkeley CA (email: oyd@ee.lbl.gov and
van@ee.lbl.gov). This work was supported by the Director, O�ce of En-
ergy Research, Scienti�c Computing Sta�, of the U.S. Department of En-
ergy under Contract No. DE-AC03-76SF00098 and by ARPA/CSTO.
This is a revised version of an earlier draft, dated September 1993, that

was made available over the Internet. Copyright c1995 by IEEE.

controlled link-sharing can also be a key component in en-

abling the deployment of priority-based packet scheduling

algorithms designed to meet the end-to-end service require-

ments of real-time tra�c.

One requirement for link-sharing is to share bandwidth

on a link between multiple organizations, where each or-

ganization wants to receive a guaranteed share of the link

bandwidth during congestion, but where bandwidth that is

not being used by one organization should be available to

other organizations sharing the link. Examples range from

the multiple agencies that share the Trans-Atlantic FAT

pipe and each pay a �xed share of the costs [WGCJF94] to

individuals who share a single ISDN line. Another require-

ment for link-sharing is to share bandwidth on a link be-

tween di�erent protocol families (e.g., IP and SNA), where

controlled link-sharing is desired because the di�erent pro-

tocol families have di�erent responses to congestion. A

third example for link-sharing is to share bandwidth on a

link between di�erent tra�c types, such as telnet, ftp, or

real-time audio and video.

We believe that the needs met by link-sharing are funda-

mental, given the presence of congestion. In particular, we

believe that the need to share links between multiple orga-

nizations is not a transient stage that will disappear with

the full commercialization of the Internet (until or unless

congestion itself disappears). The hierarchical structure

of organizations is not a transient phenomena, and, given

the availability of an appropriate link-sharing framework,

is likely to be reected in a continued desire for controlled

link-sharing of local resources such as network bandwidth.

Additional needs met by controlled link-sharing, discussed

in more detail later in the paper, include the ongoing need

to accommodate new services, and the need to control traf-

�c aggregation in order to realize the advantages of sharing

between connections using compatible congestion control

mechanisms.

The various requirements for link-sharing, taken together

with requirements for realtime services, naturally lead to

a requirement for hierarchical link-sharing. For example,

the bandwidth on a link might be shared between multiple

agencies, and each agency might want to share its allocated

bandwidth between several tra�c types. This leads to a hi-

erarchical link-sharing structure associated with an individ-

ual link in the network, with each class in the link-sharing

structure corresponding to some aggregation of tra�c (or

in some cases to an individual connection).

Link-sharing services and real-time services involve si-

1

multaneous sets of constraints to be satis�ed at the gate-

way. This paper addresses the interaction between real-

time services and link-sharing services at the gateway. A

key contribution of this paper is an investigation of ways

that link-sharing can be incorporated into more general

scheduling frameworks such as priority-based scheduling.

This paper proposes that link-sharing explicitly enforced at

the gateway can prevent starvation of lower-priority traf-

�c while still satisfying the needs of higher-priority tra�c,

and give the network the exibility to accommodate new

real-time applications.

As an example of the interaction between real-time ser-

vices and link-sharing, consider a link shared between two

classes of tra�c, a real-time class and a bulk-data class.

For the purposes of the link-sharing algorithms, we make

a conceptual distinction between a general scheduler and

a link-sharing scheduler. In the absence of congestion, the

gateway could use whatever general scheduler seemed most

appropriate, ranging from a priority-based to a round-robin

scheduler. However, in the presence of congestion the gate-

way might determine that one of the two classes was using

more than its allocated share of the link bandwidth, and

invoke the link-sharing scheduler to rate-limit the overlimit

class to its allocated bandwidth. This paper does not at-

tempt to outline a complete packet-scheduling algorithm;

we instead are proposing a mechanism for incorporating

controlled link-sharing into the packet scheduling frame-

work.

However, instead of implementing real-time and link-

sharing services with separate pieces of code, it is preferable

to use an integrated set of mechanisms for real-time and

link-sharing services. Identifying a set of low-level mech-

anisms that can implement these services, and separating

the low-level mechanisms from higher-level policy, gives a

exible resource management framework that allows evo-

lution. Instead of outlining a complete service model for

the Internet, we explore a set of low-level mechanisms that

can be used to e�ciently support a range of real-time and

link-sharing services. Flexibility in the resource manage-

ment framework is particularly important because it is not

easy to fully anticipate the service requirements of emerg-

ing applications on the Internet. Controlled Link-sharing

makes a key contribution to this exibility.

This paper focuses on the role of link-sharing in the re-

source management framework. As an example of the ex-

ibility a�orded by link-sharing, consider the current need

in the Internet for some mechanism to protect data tra�c

from the growing volume of real-time Mbone tra�c [E94],

as well as the need to protect the real-time tra�c from the

delays caused by competing data tra�c. Given an envi-

ronment with limited bandwidth, fully meeting the needs

of real-time tra�c requires a suite of real-time services in-

cluding ow speci�cations for the real-time applications,

a set-up procedure such as RSVP [ZDESZ93], and admis-

sions control procedures to control the number of admitted

real-time connections, in addition to appropriate schedul-

ing mechanisms at the gateway. However, by guaranteeing

that data and real-time tra�c each receive a share of the

link bandwidth over relevant time intervals, link-sharing

mechanisms can protect both Mbone and data tra�c, in

the aggregate, even in the absence of a full suite of real-time

services.

We are not suggesting that each link in the Internet

requires a separate tra�c class for each agency, protocol

family, or tra�c type traversing that link. For example,

organization-based link sharing might be needed for a link

such as the Trans-Atlantic FAT pipe while another link

has no need for organization-based link sharing. Because

di�erent links in a heterogeneous Internet will have di�er-

ent link-sharing structures, two connections that are ag-

gregated into one class on one link might be in separate

classes on the following link. One bene�t of the link-sharing

framework proposed in this paper is that it acknowledges

the decentralized nature of the Internet, and allows some

local control of bandwidth distribution.

The link-sharing goals, described in more detail in Sec-

tion 2, are quite modest. The link-sharing mechanisms

take the minimum action required to ensure that classes

receive their allocated link-sharing bandwidth over the rel-

evant time interval. The link-sharing mechanisms in this

paper do not attempt to provide congestion control within

a \leaf" class, to rate-allocate classes in the absence of

congestion, to reshape tra�c, or to specify precisely the

bandwidth to be received by each class given the current

demand. These issues are determined by the general sched-

uler used at the gateway. The link-sharing mechanisms

do not, by themselves, attempt to implement arbitrary

scheduling policies.

A hierarchical link-sharing structure can be used to spec-

ify guidelines for the distribution of \excess" bandwidth.

While one could imagine complex requirements in terms

of exactly how "extra" bandwidth is distributed or what

fraction of bandwidth each class requires over a range of

time intervals, in this paper we restrict our attention to

those fairly straightforward requirements that can be ex-

pressed by these hierarchical structures. As section 2 notes,

while the distribution of \extra" bandwidth beyond the

constraints imposed by the hierarchical link-sharing struc-

ture should not be arbitrary, this distribution is a function

of the general scheduler, and is not addressed in this paper.

The approach to link-sharing in our paper is based on

the hierarchical class-based resource management proposed

initially by Van Jacobson [CJ91]. This approach, now re-

ferred to as class-based queueing (CBQ), outlines a set of

exible, e�ciently-implemented gateway mechanisms that

can meet a range of service and link-sharing requirements.

Appendix A discusses the implementation of CBQ in our

simulator, and gives a pointer to publically-available dis-

tributions of CBQ implementations.

Our paper is in the context of a continuing discussion

about resource management in the Internet that involves

contributions from many people. As examples, see [BCS94,

CJ91, CSZ92, SCZ93, FBZ94]. The form of this paper was

motivated in part as a response to the scheduling architec-

ture proposed in [SCZ93]. We are in substantial agreement

with much in [SCZ93]; Section 8 of this paper elaborates on

2

a disagreement over the relationship between link-sharing

services and real-time services. Thus, the framework for

this paper borrows heavily from the framework in [SCZ93].

Section 2 describes the link-sharing goals in more de-

tail. Section 3 gives the general guidelines for implement-

ing hierarchical link-sharing, given a resource management

framework consisting of a general scheduler and a link-

sharing scheduler. Section 4 explores some link-sharing

guidelines that are approximations to the more rigorous

guidelines outlined in Section 3. Section 5 shows some

simulations of link-sharing at the gateway. Section 6 dis-

cusses the relationship between the link-sharing goals and

the goals for real-time tra�c. Section 7 discusses link-

sharing in terms of isolation and sharing between tra�c.

Section 8 compares the link-sharing framework discussed in

this paper with related work. Section 9 gives conclusions

and discusses future work.

2 The link-sharing goals

This section gives a general discussion of the link-sharing

goals. The requirements for link-sharing are essentially the

same whether the link-sharing is between service classes,

organizations, protocol families, or tra�c types. We argue

that a single set of mechanisms for link-sharing should be

implemented and carefully coordinated with any additional

mechanisms for providing real-time service.

The link-sharing structure speci�es the desired policy in

terms of the division of bandwidth for a particular link

in times of congestion. For example, for the link-sharing

structure in Figure 1 the link is shared by a number of

real-time and non-real-time tra�c classes. The audio and

video classes are examples of leaf classes in the link-sharing

structure, and the aggregated Link class is an interior

class. In Figure 1 the telnet class could be a class of

delay-sensitive tra�c such as X and NFS tra�c as well as

telnet tra�c. Similarly, the mail class could be a class of

delay-insensitive tra�c such as NNTP and FAX as well as

mail tra�c.

Link

ftp mailtelnetvideoaudio

20% 50% 10% 20% 0%

link−sharing allocation

Figure 1: Link-sharing between service classes.

For a at link-sharing structure such as in Figure 1,

the link-sharing requirements are fairly straightforward.

A link-sharing bandwidth is allocated to each class (ex-

pressed in Figure 1 as a percentage of the overall link

bandwidth). These link-sharing allocations could be ei-

ther static (permanently assigned by the network admin-

istrator) or dynamic (varying in response to current con-

ditions on the network, according to some predetermined

algorithm). The �rst link-sharing goal is that each class

with su�cient demand should be able to receive roughly

its allocated bandwidth, over some interval of time, in

times of congestion. As a consequence of this link-sharing

goal, in times of congestion some classes might be restricted

to their link-sharing bandwidth. For a class with a link-

sharing allocation of zero, such as the mail class in Figure

1, the bandwidth received by this class is determined by

the other scheduling mechanisms at the gateway; the link-

sharing mechanisms do not \guarantee" any bandwidth to

this class in times of congestion.

The link-sharing goals are a rough quantitative band-

width commitment by the network. Associated with these

link-sharing goals is some notion of the time interval over

which the link-sharing goals apply. As discussed later in

the paper, this is determined by the time constant used in

estimating the past bandwidth used by each class. For ex-

ample, in Figure 1 it might be considered unacceptable if

the telnet and ftp classes were denied service for minutes

at a time. On the other hand, �ne-grained scheduling to

ensure that the telnet and ftp classes each receive their al-

located link-sharing bandwidth over arbitrarily-small time

intervals is not required. Priority-based scheduling can be

used to reduce delay for the real-time tra�c, while the

link-sharing mechanisms prevent starvation of the ftp traf-

�c over longer time intervals.

Link

50% 40% 10%

A B C

link−sharing allocation

Agency Agency Agency

Figure 2: Link-sharing between multiple agencies or pro-

tocol families.

A secondary link-sharing goal is that when some class is

not using its allocated bandwidth, the distribution of the

`excess' bandwidth among the other classes should not be

arbitrary, but should follow some appropriate set of guide-

lines. For a at link-sharing structure, this distribution

of excess bandwidth is determined by the other scheduling

mechanisms used at the gateway, and is not speci�ed by the

link-sharing structure. For example, consider link-sharing

between organizations or protocol families, as in Figure 2.

If agency A has little tra�c to send, agency B might con-

sider it unfair or arbitrary if all of the `excess' bandwidth

was given to agency C. For link-sharing between agencies

or between protocol families, the scheduling mechanisms

could distribute `excess' bandwidth in a way that takes

into account the relative link-sharing allocations of those

3

ftptelnet

Link

ftptelnetftptelnet

50% 40% 10%

A B C

link−sharing allocation

time
real−

time
real−

time
real−

10%10%

30%

0%5%

2% 5%3%

Agency Agency Agency

IP
net

DEC−

15%

20%

conn.
1

conn....
n

1% 1%...

Figure 3: A hierarchical link-sharing structure.

entities.

Multiple link-sharing constraints at a gateway can be ex-

pressed by a hierarchical link-sharing structure such as in

Figure 3. The link-sharing structure in Figure 3 illustrates

link-sharing between organizations, between protocol fam-

ilies, between service classes, and between individual con-

nections within a service class; this is not meant to imply

that all link-sharing structures at all links should include

all of these forms of link-sharing. All arriving packets at

the gateway are assigned to one of the leaf classes; the in-

terior classes are used to designate guidelines about how

`excess' bandwidth should be allocated. Thus, the goal is

that the three service classes for agency A should collec-

tively receive 50% of the link bandwidth over appropriate

time intervals, given su�cient demand. If the real-time

class for agency A has little data to send, the hierarchical

link-sharing structure speci�es that the `excess' bandwidth

should be allocated to other subclasses of agency A.

The link-sharing goals can be summarized as follows:

Link-sharing goals:

1: Each interior or leaf class should receive roughly its

allocated link-sharing bandwidth over appropriate time in-

tervals, given su�cient demand.

2: If all leaf and interior classes with su�cient demand

have received at least their allocated link-sharing band-

width, the distribution of any `excess' bandwidth should

not be arbitrary, but should follow some set of reasonable

guidelines. 2

The implementation of the �rst link-sharing goal is dis-

cussed in detail in this paper. As mentioned in the Intro-

duction, the �rst link-sharing goal is limited by the con-

straints of the hierarchical class structure.

The second link-sharing goal concerning the further dis-

tribution of excess bandwidth is not addressed in this pa-

per. This second link-sharing goal simply states that when

the distribution of bandwidth is not constrained by the hi-

erarchical link-sharing structure, that distribution should

nevertheless not be arbitrary, but should follow some ac-

ceptable policy. The guidelines for the distribution of ex-

cess bandwidth should reect both these higher-level policy

concerns and realistic limitations imposed by e�ciently-

implemented schedulers. The distribution of excess band-

width for the scheduler in our simulator is discussed in

Appendix A.2.

Note that the link-sharing goals do not attempt to ad-

dress all of the questions of congestion control at the gate-

way. The link-sharing mechanisms monitor and control

bandwidth allocations between various classes of tra�c;

the question of congestion control for the tra�c within

a class remains. For leaf classes that contain a number

of aggregated connections, congestion control within the

class could be provided by the use of end-to-end transport

protocols such as TCP, by an explicit admissions control

procedure for that class, or by a connection-based schedul-

ing algorithm instead of FIFO scheduling within the class.

For some classes of video tra�c, congestion control within

the class could be provided by some form of source- or

receiver-based rate-adaptive congestion control. For some

classes, the gateway could use RED gateway mechanisms

to monitor the average queue size and provide appropriate

feedback to the sources [FJ93].

The link-sharing goals require a data structure associ-

ated with each link, describing the class structure at that

link, and giving the link-sharing bandwidth for each class.

In addition to the possibility of dynamic bandwidth alloca-

tions to existing classes, the link-sharing structure itself for

a particular link can have both static and dynamic com-

ponents. A static link-sharing structure with �xed classes

and bandwidth allocations might be appropriate for a link

shared between multiple agencies; in this case, the link-

sharing bandwidth allocated to each agency might be set

by the network administrator. On the other hand, a link-

sharing structure with dynamic components would have

provisions for the creation and removal of subclasses and

for the adjustment of bandwidth allocations. Such a dy-

namic link-sharing structure would be appropriate when

the link-sharing mechanism is used to monitor the band-

width of speci�c real-time tra�c ows, while at the same

time ensuring that the real-time ows don't monopolize the

bandwidth on the link. For dynamic link-sharing, some

4

mechanism is needed to limit the lifetimes of dynamically-
created classes. This issue of lifetime restrictions is not
addressed in this paper, but should be considered in the
context of set-up protocols and admissions control proce-
dures for real-time tra�c.

3 Formal link-sharing guidelines

This section gives formal guidelines for implementing hi-
erarchical link-sharing at the gateway. Section 4 discusses
heuristics that approximate these formal link-sharing guide-
lines.
De�nitions: general scheduler, link-sharing sched-

uler. This paper assumes that each class has its own queue
at the gateway. The conceptual framework further assumes
that the scheduling mechanisms include a general scheduler

that schedules packets from leaf classes without regard to
link-sharing guidelines, and a link-sharing scheduler that
schedules packets from some leaf classes that have been
exceeding their link-sharing allocations in times of conges-
tion. We assume that all arriving packets are associated
with a leaf class in the link-sharing structure. 2
One job of the general scheduler is to provide for real-

time tra�c that has particular delay or throughput re-
quirements. The general scheduler could be one of a num-
ber of proposed scheduling algorithms that determines the
packet-by-packet scheduling necessary to meet the service
goals. We generally assume that a priority-based general
scheduler is used, but this paper does not specify the gen-
eral scheduler in more detail. The priorities and de�nitions
of the classes in the class structure are a policy issue that
is not addressed in this paper.
De�nitions: regulated and unregulated classes.

We call a class a regulated class if packets from that class are
being scheduled by the link-sharing scheduler at the gate-
way; we call a class unregulated if tra�c from the class is
being scheduled by the general scheduler. Like the distinc-
tion between the general and the link-sharing scheduler,
this distinction between regulated and unregulated classes
is introduced for conceptual purposes, and is used by the
link-sharing algorithms described later in the paper. Any
implementation will have a single integrated scheduler. In
general, classes will change status from regulated to un-
regulated, and back, as conditions in the network change.
2

The link-sharing scheduler could use one of a number of
algorithms to restrict the bandwidth of regulated classes.
One option for the link-sharing scheduler is to rate-limit the
regulated class to its link-sharing bandwidth; this regula-
tion would be accompanied by some strategy for dropping
arriving packets when necessary. However, there are other
options; as an example, the link-sharing scheduler could
simply decrease the priority of the regulated class, so that
the general scheduler schedules packets from that class less
frequently.
De�nitions: classi�er, estimator. In addition to the

general scheduler and the link-sharing scheduler, required

link-sharing mechanisms include a classi�er and an estima-

tor. The classi�er classi�es packets arriving at the gateway
to the appropriate class for that output link. [WGCJF94]
describes an e�cient implementation of a classi�er. While
there are many open questions concerning the guidelines
used for the classi�cation of packets, these questions are
orthogonal to scheduling issues, and will not be discussed
further in this paper. In particular, we don't take a posi-
tion on whether classi�cation should be based on explicit
requests for service from applications, or on packet �elds
(e.g., source and destination addresses, the protocol �eld)
determined by the network.
The estimator estimates the bandwidth used by each

class over the appropriate time interval, to determine whether
or not each class has been receiving its link-sharing band-
width. The time constant for the estimator is a critical
parameter; this time constant determines the interval over
which the gateway attempts to enforce the link-sharing
guidelines. Appendix A discusses the estimator in more
detail. 2
This paper focuses on the interaction between the gen-

eral scheduler and the link-sharing scheduler. In the ab-
sence of persistent congestion, the general scheduler is all
that is required to schedule tra�c on the output link. How-
ever, in the presence of congestion the gateway might also
want to take into account link-sharing goals for sharing
the link bandwidth among di�erent tra�c types, protocol
families, or agencies. The link-sharing guidelines in this
section specify when a class can continue unregulated and
therefore scheduled by the general scheduler, and when the
class should be regulated by the link-sharing scheduler.
While this paper makes a conceptual separation between

the general scheduler and the link-sharing scheduler, this
does not imply that the two schedulers consist of separate
sections of code. For example, as Appendix A explains,
in our simulator the \link-sharing scheduler" and \general
scheduler" simply use di�erent algorithms in setting a class
parameter called the time-to-send �eld that indicates the
next time that a packet is allowed to be sent from that
class.
De�nitions: overlimit, underlimit, at-limit. A

class is called overlimit if it has recently used more than its
allocated link-sharing bandwidth (in bytes/second, as av-
eraged over a speci�ed time interval), underlimit if it has
used less that a speci�ed fraction of its link-sharing band-
width, and at-limit otherwise. The limit status of each
class is determined by the estimator, and is used to deter-
mine when explicit action should be taken to correct the
link-sharing behavior of the tra�c. 2
Note that with these de�nitions, if the root node of the

link-sharing structure, representing the link itself, is allo-
cated 100% of the link bandwidth, then the root class can
never be overlimit.
De�nitions: satis�ed, unsatis�ed. A leaf class is

de�ned as unsatis�ed with the link-sharing behavior if it
is underlimit and has a persistent backlog, and satis�ed

otherwise. A non-leaf class is de�ned as unsatis�ed with
the link-sharing behavior if it is underlimit and has some

5

descendant class with a persistent backlog.

We do not de�ne a persistent backlog in more detail; the

exact de�nition should be a policy issue. The intention is

that an unsatis�ed class is a class that is underlimit and

that has su�cient demand to use additional bandwidth.

While an underlimit class that occasionally has a packet

or two in the queue for a brief time should probably not

be considered unsatis�ed with the link-sharing behavior, in

our simulator's implementation of the formal link-sharing

guidelines any class with a non-empty queue is de�ned as

having a persistent backlog. The notion of a persistent

backlog is not used in the approximations to the formal

link-sharing guidelines presented in the next section. 2

In proposing formal link-sharing guidelines, we �rst con-

sider a link with a at link-sharing structure, as in Figure 1.

In this case, the link-sharing guidelines are fairly clear and

intuitive. When a class is not overlimit or when there are

no unsatis�ed classes, then the class does not need to be

regulated by the link-sharing scheduler. However, when a

class is overlimit and some other class is unsatis�ed, then

the overlimit class is contributing to congestion on the link,

and should be regulated by the link-sharing scheduler. This

regulation should continue until the class is no longer over-

limit or until there are no more unsatis�ed classes.

Given these guidelines for link-sharing, an overlimit class

is only regulated when some other class has un�lled de-

mand and has not been receiving its allocated bandwidth

over the speci�ed time interval. When all classes are sat-

is�ed with the link-sharing behavior, no classes have to be

regulated.

For a hierarchical link-sharing structure, the link-sharing

guidelines are an extension of the guidelines given above.

First, we de�ne the level of a class in the link-sharing struc-

ture.

De�nitions: levels. All leaf classes in a link-sharing

structure are de�ned to be at level 1, and each interior class

has a level one greater than the highest level of any of its

children. An example of levels is shown in Case 1 in Figure

4. 2

The formal link-sharing guidelines given below imple-

ment the link-sharing goals described in the previous sec-

tion. The formal link-sharing guidelines specify when a

class is allowed to borrow unused bandwidth from ancestor

classes.

Formal link-sharing guidelines:

A class can continue unregulated if one of the following

conditions hold:

1: The class is not overlimit, OR

2: The class has a not-overlimit ancestor at level i, and

there are no unsatis�ed classes in the link-sharing structure

at levels lower than i.

Otherwise, the class will be regulated by the link-sharing

scheduler. 2

Note that these link-sharing guidelines are used simply

to decide if a class is allowed to be scheduled by the general

scheduler, unregulated, or whether the class should have its

bandwidth regulated by the link-sharing scheduler. The di-

vision of the available bandwidth between the unregulated

classes is determined by the general scheduler. The link-

sharing guidelines are simply used to determine when some

class is using more than its allocated bandwidth and con-

tributing to the unsatis�ed state of some other class in the

link-sharing.

The cases below, illustrated in Figure 4, illustrate the

formal link-sharing guidelines. For each example link-sharing

structure in Figure 4, the bold circles mark the overlimit

and underlimit classes, and small queues showwhich classes

have a persistent backlog. Given this status, the formal

link-sharing guidelines are applied to determine which classes

need to be regulated. In Figure 4 the leaf classes labeled

\1" are real-time classes and the classes labeled \2" are

non-real-time classes.

Case 1: Consider a link-sharing hierarchy where no

classes are unsatis�ed. In this case no classes need to be

regulated. 2

Case 2: In this case there are two overlimit classes, but

only the Agency B non-real-time class is unsatis�ed, and

the Agency A class is not overlimit. From the link-sharing

guidelines, neither real-time class is allowed to borrow from

their parent classes and therefore both real-time classes

will be regulated. Appendix C examines the pathological

behavior that could result if the Agency A real-time class

was allowed to continue unregulated in this case. 2

Case 3: In this case the Agency A class and the Agency

A real-time class are overlimit, while the Agency B class

and Agency B non-real-time class are unsatis�ed. From

the link-sharing guidelines, the Agency A real-time class

needs to be regulated. Because the formal link-sharing

guidelines take into account the limit status of ancestor

classes, hierarchical link-sharing can be provided. 2

Case 4: In this case no leaf classes are unsatis�ed, but

the Agency A class itself is unsatis�ed. Because the Agency

A class is underlimit and there are no unsatis�ed classes

at lower levels, the Agency A non-real-time class can con-

tinue unregulated. However, according to the link-sharing

guidelines the Agency B real-time class should be regu-

lated. This is another example of how the link-sharing

guidelines can provide hierarchical link-sharing. 2

Note that we did not specify in the link-sharing guide-

lines how frequently the scheduler should check whether

or not a class needs to regulated. In our implementation

the general scheduler checks whether or not a class can con-

tinue to send unregulated just before transmitting a packet

from that class, but this check could also be made less fre-

quently.

When should the control of a class by the link-sharing

scheduler be terminated? One possibility is that a regu-

lated class should remain regulated as long as the formal

link-sharing guidelines are not met. A class might oscillate

frequently between being regulated and being unregulated,

but this is not necessarily a problem. If for implementa-

tion reasons it is desired to reduce the frequency of these

oscillations, the following guidelines could be used:

Alternate link-sharing guidelines:

A class can continue unregulated if one of the following

conditions hold:

6

A B

1 2 1 2

Case 1:

Level 1

Level 2

Level 3

A B

1 2 1 2

Case 2:

A B

1 2 1 2

Case 3:

A B

1 2 1 2

Case 4:
Legend:

: overlimit
 class

: underlimit
 class

: persistent
 backlog

: class to be
 regulated

: unsatisfied
 class

Figure 4: Examples of link-sharing scenarios.

1: The class is not overlimit, OR

2: The class has a not-overlimit ancestor at level i, and the

link-sharing structure has no unsatis�ed classes at levels

lower than i.

Otherwise, the class will be regulated by the link-sharing

scheduler.

A regulated class will continue to be regulated until one of

the following conditions hold:

1: The class is underlimit, OR

2: The class has a underlimit ancestor at level i, and the

link-sharing structure has no unsatis�ed classes at levels

lower than i.

2

De�nitions: exempt, bounded, and isolated classes.

A link-sharing structure could mark some classes as ei-

ther exempt or bounded, if desired. [SCZ93] introduces

the notion of exempt tra�c that is never restricted by the

scheduler to its allocated link-sharing bandwidth, regard-

less of the level of congestion on the output link.1 Our

link-sharing structure would designate an exempt class by

assigning the class a link-sharing bandwidth of 100% of

the link bandwidth. For an exempt class, either the gen-

eral scheduler and the admissions control procedure should

ensure that the tra�c from the class does not violate the

link-sharing goals, or there should be a clear understand-

ing that scheduling this tra�c takes precedence over the

link-sharing goals.

A bounded class is not allowed to borrow from ancestor

classes, regardless of the limit status of those classes. This

might be done, for example, for a tra�c class consisting of

a single high-priority real-time connection where low jitter

is more important than low average delay. In our imple-

1The proposal in [SCZ93, JSZC92] is for real-time tra�c to be exempt,
and for the admissions control procedure to be the sole mechanism to
ensure that the real-time tra�c does not violate the link-sharing goals.

mentation of the link-sharing structure each class has both

a \parent" �eld giving that class's parent in the class tree

and a \borrow" �eld indicating whether or not that class

is allowed to borrow unused bandwidth from the parent.

A bounded class would have the \borrow" �eld set to not

allow borrowing.

An isolated class is one that does not allow non-descendant

classes to \borrow" its unused bandwidth, and that does

not borrow bandwidth from other classes in turn. An iso-

lated class would leave the parent �eld empty, and would

simply be assigned a fraction of the link bandwidth. 2

The formal link-sharing guidelines are discussed further

in Appendix B.

4 Approximations to the formal link-

sharing guidelines.

The previous section described a set of formal link-sharing

guidelines. With the formal guidelines the decision whether

or not to regulate a class depends not only on the limit

status of parent classes but also on the `satis�ed' status of

other classes in the same link-sharing structure. It is pos-

sible that these formal link-sharing guidelines could be e�-

ciently implemented given appropriate architectures and/or

data-structures. However, in this section we explore several

approximations to formal link-sharing that lend themselves

more readily to e�cient implementations. This section dis-

cusses two approximations to formal link-sharing; the �rst

approximation is Ancestors-Only link-sharing. The second

approximation, Top-Level link-sharing, gives improved per-

formance over Ancestors-Only link-sharing,

In Ancestors-Only link-sharing, for ease of implementa-

tion, the decision whether or not to regulate a class is deter-

7

mined only by the limit status of that class and of parent

classes. A simple example with a at link-sharing struc-

ture illustrates some of the di�culties of such an approach.

For the link-sharing structure in Figure 1, an overlimit leaf

class cannot remain unregulated when the root class is at-

limit and the output link is at full capacity; if this were

the case, then an overlimit class could never be regulated.

The most straightforward answer is to allow an overlimit

class to remain unregulated only when some ancestor class

is underlimit (instead of simply being not overlimit).

The Ancestors-Only link-sharing guidelines are as fol-

lows:

Ancestors-Only link-sharing guidelines:

A class can continue unregulated if one of the following

conditions hold:

1: The class is not overlimit, OR

2: The class has an underlimit ancestor.

Otherwise, the class will be regulated by the link-sharing

scheduler. 2

One drawback of the Ancestors-Only approach is that

because the `satis�ed' status of sibling classes is not exam-

ined, no distinction can be made between the Agency A

real-time class in Case 1 and the Agency B real-time class

in Case 2. In this case, either the Agency A real-time class

in Case 1 will be regulated unnecessarily, as required by

the Ancestors-Only link-sharing guidelines above, or nei-

ther real-time class will be regulated and the link-sharing

goals will not be satis�ed.

While Ancestors-Only link-sharing gives acceptable re-

sults in most occasions, it is not as robust as formal link-

sharing. Because the estimator distinguishes between at-

limit and underlimit ancestor classes, allowing an overlimit

leaf class to remain unregulated only when there is an un-

derlimit ancestor, Ancestors-Only link-sharing is sensitive

to the quantitative parameter used to distinguish between

at-limit and underlimit classes.

A B

1 2 1 2

Figure 5: Sensitivity of Ancestors-Only link-sharing.

Ancestors-Only link-sharing can be sensitive to other pa-

rameters of the estimator as well. For the link-sharing

structure in Figure 5, assume that, following a period when

Agency B tra�c used all of the link bandwidth, the priority-

one class in Agency A has recently sent a large burst of

packets, and has just been labeled by the estimator as over-

limit. The Agency A real-time class will continue to be able

to send unregulated as long as the estimator continues to

label the Agency A class itself as underlimit, regardless

of the unsatis�ed state of Agency A's priority two class.

Thus, Ancestors-Only link-sharing is sensitive to the maxi-

mum burst that can be sent before a previously-idle interior

class is considered overlimit.

To illustrate some of the weaknesses of Ancestors-Only

link-sharing, consider the link-sharing structure in Case 4

in Figure 4, and assume that the general scheduler gives

priority to real-time tra�c over non-real-time tra�c. As-

sume further that the Agency A real-time class has lit-

tle data to send for an extended period of time, and that

the Agency B real-time class has un�lled demand. With

Ancestors-Only link-sharing, the Agency B real-time class

is allowed to send unregulated whenever the root class is

underlimit, regardless of the limit status of Agency A. The

result is that both Agency A and the root class will cycle

between being underlimit and being not-underlimit, and

the Agency A non-real-time class will cycle between re-

ceiving and not receiving bandwidth. If Agency A is lim-

ited in the `credit' that it gets for being idle for periods of

time, then Agency A could receive less than its allocated

link-sharing bandwidth.

The Top-Level link-sharing guidelines, which use a slight

modi�cation of the Ancestors-Only approach, give a more

robust approximation to formal link-sharing. In the Top-

Level guidelines, the gateway still examines the limit sta-

tus of ancestor classes. However, in addition the Top-Level

approach considers the levels of the various classes in the

hierarchical link-sharing structure. The gateway maintains

a Top-Level variable that indicates the highest level from

which a class is allowed to `borrow' bandwidth. As in for-

mal link-sharing, where classes are not allowed to borrow

from ancestors at level i or above if there are unsatis�ed

classes at level i� 1, Top-Level link-sharing uses the Top-

Level variable to indicate the highest level from which a

class may borrow bandwidth, and uses various heuristics

to set the Top-Level variable.

Top-Level link-sharing guidelines:

A class can continue unregulated if one of the following

conditions hold:

1: The class is not overlimit, OR

2: The class has an underlimit ancestor whose level is at

most Top-Level.

Otherwise, the class will be regulated by the link-sharing

scheduler. 2

This is a range of possibilities for heuristics for setting

the Top-Level variable. When Top-Level is set to In�nity,

then Top-Level link-sharing is identical to Ancestors-Only

link-sharing. When Top-Level is set to the lowest level that

has an unsatis�ed class, then Top-Level link-sharing is es-

sentially the same as formal link-sharing. For example, if

the gateway sets Top-Level to 1 when there is a class that

is not overlimit and that has a nonempty queue, then for

as long as Top-Level remains set to 1, only classes that are

not overlimit will be able to send packets. However, rather

8

than precisely implementing formal link-sharing, and con-
tinually updating the Top-Level variable as queues build up
and disperse and as classes change their limit status, Top-
Level link-sharing avoids some of the overhead by using
simplier heuristics to set the Top-Level variable.
Our simulator uses the guidelines below for setting the

Top-Level variable.
Heuristics for setting the Top-Level variable:

1: If a packet arrives for a not-overlimit class, set Top-

Level to 1.
2: If Top-Level is i, and a packet arrives for an overlimit
class with an underlimit parent at a lower level than i (say
j), then set Top-Level to j.
3: After a packet is sent from a class, and that class now
either has an empty queue or is unable to continue unreg-
ulated, then set Top-Level to In�nity.

With these guidelines, the gateway sets Top-Level to i

only when the gateway knows that some class can send a
packet without borrowing from an ancestor above level i.
The setting of the Top-Level variable reects partial knowl-
edge of the gateway. For example, with these guidelines the
Top-Level variable might be greater than 1 even though
there is a not-overlimit class with a non-empty queue.
While Top-Level link-sharing requires the additional over-

head in maintaining the Top-Level variable, compared to
Ancestors-Only link-sharing, there are other ways in which
Top-Level link-sharing requires less overhead than Ancestors-
Only link-sharing. For example, in Top-Level link-sharing
when the Top-Level variable is one, then the scheduler
doesn't check the limit status of parent classes before de-
ciding whether or not a class needs to be regulated.

5 Link-sharing simulations

5.1 Comparisons of formal, Ancestors-Only,

and Top-Level link-sharing

This section illustrates the performance di�erences between
formal, Ancestors-Only, and Top-Level link-sharing in a
simulation environment with extremely simple tra�c ar-
rival patterns.

GATEWAY

SINK

FTPVIDEO
SOURCESOURCE

10 Mbps

1.5 Mbps

VIDEO
SOURCE

FTP
SOURCE

AGENCY
 B

AGENCY
 A

AGENCY
 B

AGENCY
 A

Figure 6: Simulation scenario for two-agency link-sharing.

Link

ftp

priority, link−sharing allocation

audio video

1, 3% 2, 65%1, 32%

Figure 7: Link-sharing structure for the simulation of at
link-sharing.

A B

priority, link−sharing bandwidth

videoftpvideo ftp

70% 30%

1, 30% 2, 40% 2, 20%1, 10%

Figure 8: Link-sharing structure for the simulation of
two-agency link-sharing.

A B

priority, link−sharing bandwidth

videoftpvideo ftp video ftp

C

50% 10% 40%

1, 5% 2, 45% 1, 5% 2, 5% 1, 5% 2, 35%

Figure 9: Link-sharing structure for the simulation of
three-agency link-sharing.

Time in seconds

B
an

dw
id

th
 (

%
)

0 10 20 30

0
20

40
60

80
10

0

Idle
Source: ftp video audio

ftp

video

audio

total traffic

Figure 10: Flat link-sharing with Top-Level link-sharing
guidelines.

Figure 6 shows the network scenario for one of the sim-
ulations. Each simulation network has a single congested
gateway, with the various link-sharing structures for the

9

congested link shown in Figures 7 through 9. Each class

has a single constant-bit-rate source with its own input link

to the congested gateway, and each class has su�cient de-

mand to use the entire link bandwidth of the shared link.

These (admittedly unrealistic) sources are used as a simple

way to explore link-sharing free from extraneous inuences.

In these simple simulations the tra�c for each class is gen-

erated by a single source, but in general the tra�c in a

class could consist of many connections from many di�er-

ent sources. In these simulations, the ftp packets are 1000

bytes. The video packets are somewhat arbitrarily set at

190 bytes, and the audio packets range from 250 to 500

bytes. The packet sizes were chosen simply to explore the

behavior with a range of packet sizes for the various con-

nections.

For the implementation of link-sharing in these simu-

lations, the gateway maintains a separate queue for each

leaf class, where each queue can hold 20 packets. Arriv-

ing packets for a class are dropped when that class's queue

is full. Each leaf class in the link-sharing structure is as-

signed a priority level as well as a link-sharing allocation.

The general scheduler in our simulator uses strict priority.

For classes of the same priority the general scheduler uses a

variant of weighted round-robin, with weights proportional

to the link-sharing bandwidths of the classes. Thus within

a priority level the general scheduler distributes bandwidth

according to the link-sharing allocations of the classes. The

link-sharing scheduler in our simulator rate-limits each reg-

ulated class to its link-sharing bandwidth. The estimator,

general scheduler, and link-sharing scheduler in the simula-

tor are explained in more detail in Appendix A. The time

constant used by the simulator's estimator for computing

the limit status for a class is relatively small, equal to the

time to transmit 16 packets from the class.2

For the simulation in Figure 10, the congested link uses

the at class structure in Figure 7, which has two high-

priority classes and one lower-priority class. The x-axis

in Figure 10 shows time and the y-axis shows the average

bandwidth used by each class over one-second intervals, as

a percentage of the link bandwidth. In the simulation, for

each tra�c class in turn the source stops transmitting for

some seconds. The idle source is indicated at the bottom

of the �gure.

The simulation shows that when all sources are trans-

mitting (e.g., from time 2 to time 6), each class receives

roughly its link-sharing allocation. When the ftp class

stops transmitting for a few seconds at time 7, the \ex-

cess" bandwidth is shared between the two real-time classes

in proportion to the link-sharing bandwidths of those two

classes. This sharing results from the weighted round-

robin within priority levels used by the simulator's gen-

eral scheduler. When the video class stops transmitting

for a few seconds, the \excess" bandwidth is used by the

audio class, because the general scheduler gives the audio

class priority over the ftp class. Similarly, when the audio

class stops transmitting for a few seconds, the small mea-

2The time constant for the estimator is de�ned in Appendix A.

sure of `excess' bandwidth is used by the video class. Even

though the general scheduler uses priority scheduling, the

link-sharing mechanisms ensure that the ftp class receives

at least its link-sharing bandwidth when it has su�cient

demand. This simulation gives essentially the same results

with formal, Ancestor-Only, or Top-Level link-sharing.

Time in seconds

B
an

dw
id

th
 (

%
)

0 10 20 30 40

0
20

40
60

80
10

0

Idle Source:
video

A
video

B ftp A ftp B all video

ftp, A

video, A

ftp, B

video, B

total traffic

agency A

agency B

Figure 11: Two-agency link-sharing with formal

link-sharing guidelines.

Time in seconds

B
an

dw
id

th
 (

%
)

0 10 20 30 40

0
20

40
60

80
10

0

Idle Source:
video

A
video

B ftp A ftp B all video

ftp, A
video, A

ftp, B

video, B

total traffic

agency A

agency B

Figure 12: Two-agency link-sharing with Ancestor-Only

link-sharing guidelines.

Time in seconds

B
an

dw
id

th
 (

%
)

0 10 20 30 40

0
20

40
60

80
10

0

Idle Source:
video

A
video

B ftp A ftp B all video

ftp, A
video, A

ftp, B

video, B

total traffic

agency A

agency B

Figure 13: Two-agency link-sharing with Top-Level

link-sharing guidelines.

For the simulations in Figures 11 through 13 the con-

gested link uses the two-agency class structure in Figure

8. The �gures show simulations with formal, Ancestor-

Only, and Top-Level link-sharing. The solid lines show the

bandwidth used by the two video classes, the dotted lines

show the bandwidth used by the two ftp classes, and the

dashed lines show the aggregate bandwidth used by the in-

10

terior classes. In each simulation the source for each class

stops transmitting for some seconds. Note that when each

class stops transmitting, the `excess' bandwidth is used

by the other class in the same agency, as the hierarchical

link-sharing structure speci�es. Thus, each agency receives

roughly its link-sharing bandwidth as long as it has su�-

cient demand. Near the end of the simulation, the video

sources stop transmitting again, and each ftp class receives

the link-sharing allocation of its parent class.

Note that in the simulation with formal link-sharing,

each agency receives its link-sharing allocation throughout

the simulation. In the simulation with Ancestor-Only link-

sharing, when the agency A ftp class stops sending some

of the \extra" bandwidth is taken by the agency B video

class, and agency A receives less than its link-sharing allo-

cation for part of the simulation. This problem is largely

corrected in the simulation with Top-Level link-sharing.

Time in seconds

B
an

dw
id

th
 (

%
)

0 10 20 30 40 50

0
20

40
60

80
10

0

Idle Source:
ftp
A

ftp
C

ftp
B

ftp ends:
BA

video ends:
A B C

ftp, A

ftp, C

ftp, B

video

total traffic

Figure 14: Three-agency link-sharing with Top-Level

link-sharing guidelines.

For the simulation in Figure 14, the congested link uses

the three-agency class structure in Figure 9. In this simula-

tion all three video classes are marked as bounded and are

not allowed to use bandwidth from parent classes. Thus

each video class receives at most 5% of the link bandwidth

regardless of other tra�c on the link. This simulation

shows that when the source for one of the ftp classes stops

transmitting for a few seconds, the `excess' bandwidth is

distributed between the other two ftp classes, roughly in

proportion to the link-sharing allocations of those classes.

(Again, this is because of the weighted round-robin used

by the general scheduler.) Near the end of the simulation,

one by one most of the sources stop transmitting, remain-

ing idle for the duration of the simulation. This is shown

at the bottom of the �gure. These simulation results are

essentially the same for formal, Ancestor-Only, and Top-

Level link-sharing.

In general, in simulations with Ancestor-Only link-sharing

the higher-priority classes sometimes receive slightly more

bandwidth than is allocated, and the agency-level link-

sharing is sometimes imprecise. The Ancestor-Only link

sharing is also more sensitive to the setting of the various

parameters used in computing the limit status of the in-

terior classes. The problems are reduced with Top-Level

link-sharing, and these problems do not occur in the sim-

ulations with formal link-sharing.

5.2 Priority scheduling in a link-sharing

framework

A key feature of our link-sharing framework is the ability

to share bandwidth between classes with di�erent priori-

ties. In this section we investigate some of the interactions

between priority-based schedulers and link-sharing.

The simulations in this section compare a priority-based

scheduler with a non-priority-based scheduler that approx-

imates an idealized uid ow model of link-sharing. For

these simulations, each agency has a real-time, interactive,

and ftp class. The goal of the simulations is to investigate

the advantages or disadvantages of giving interactive tra�c

priority over the ftp tra�c.

Simulations of two-agency link-sharing show that when

the arrival process for the interactive class is moderately

bursty, the use of a priority-based scheduler that gives the

interactive class priority over the ftp class can signi�cantly

reduce the delay of the interactive tra�c without adversely

a�ecting the average throughput of the ftp tra�c. More

precisely, the simulations show that the advantages of in-

corporating priorities in the link-sharing structure are most

pronounced when the arrival rate for the higher-priority

(interactive) class is bursty and the link bandwidth is sig-

ni�cantly greater than the average bandwidth received by

the higher-priority class.

Figure 15 shows the network scenario used for all of the

simulations in this section, and Figure 16 shows the class

structure for the congested link. In this paper we call a data

connection delay-sensitive if the user is concerned with the

delay of the individual packets or short bursts of packets in

the connection; examples include real-time, telnet, X, and

NFS tra�c. We call a data connection throughput-sensitive

if the connection transfers a fairly large number of packets,

and the user is only concerned with the arrival time of the

last packet in the transfer. An example of a throughput-

sensitive data connection would be a �le transfer where the

user would like to receive the �le as promptly as possible,

but where the user is not concerned with the arrival time

of the individual packets. For the simulations in this sec-

tion, we assume that the tra�c in the real-time class is

constrained by an admissions control procedure, and the

tra�c in the interactive class is delay-sensitive but is not

constrained by an admissions control procedure. We as-

sume that the tra�c in the ftp class is throughput-sensitive

TCP tra�c consisting of large �le transfers.

For the purposes of this section, we call a class uncon-

gested if there is no persistent queue, and congested other-

wise. For each simulation in this section only one of the

two ftp classes and only one of the two interactive classes

is active. The active ftp class consists of three ftp connec-

tions with maximum windows set so that, in the absence

of congestion, the three ftp connections together could use

most of the link bandwidth. Thus, in these simulations the

active ftp class is usually congested. The simulator's TCP

11

is based on 4.3 Tahoe TCP.

The key parameter in these simulations is the average

arrival rate for the active interactive class. We are not

attempting to construct a realistic source model for the

interactive class; our goal is to investigate the delay and

throughput of the various classes in di�erent simulations

with di�erent arrival rates and degrees of burstiness for the

interactive tra�c. In the simulator the agency A interac-

tive class has a single UDP source that generates bursts of

four 1000-byte packets at exponential time intervals, while

the Agency B interactive class has a UDP source that sends

single 50-byte packets at exponential time intervals. (The

interaction class tra�c could be thought of, perhaps, as

a single UDP video connection unconstrained by an ad-

missions control procedure, or as tra�c from UDP-based

whiteboard sessions, or as the aggregate of a large number

of short-lived connections using non-standard congestion

control mechanisms.) The arrival rate for the aggregate

Agency A interactive tra�c is fairly bursty, while the ar-

rival rate for the aggregate Agency B interactive tra�c is

fairly smooth.

GATEWAY

SINK

1.5 Mbps
10 ms

1 ms

TRAFFIC SOURCES

1.5 Mbps

Figure 15: General simulation scenario for the investigation

of delay.

B

priority, link−sharing bandwidth

link

80%20%

ftpreal−
time

inter−
active

A

ftpreal−
time

inter−
active

1, 5% 2, 5% 3, 10% 1, 25% 3, 30%2, 25%

Figure 16: Link-sharing structure for the congested gate-

way.

Two sets of simulations were run for each scenario in

this section. The �rst set of simulations, illustrated by a

solid line in subsequent �gures, uses the link-sharing struc-

ture in Figure 16. This link-sharing structure takes ad-

vantage of both bandwidth allocations and priorities for

the interactive and ftp tra�c. The second set of simula-

tions, illustrated with a dashed line, uses a similar link-

sharing structure, where the only change is that the ftp

classes have priority two instead of priority three. This

second set of simulations approximates an idealized uid

ow model of instantaneous link-sharing, such as that pro-

posed in [SCZ93] for interactive and ftp tra�c.

The simulations use the formal link-sharing guidelines.

Each class has its own Drop-Tail queue at the congested

gateway, where packets arriving to a full queue are dropped.

The bu�er size for each class is 20 packets (well over the

delay-bandwidth product of four packets for a single con-

nection). The average queueing delay for tra�c in a class is

determined not only by the priority level of the class, but

also by the bu�er size and by the fraction of bandwidth

available for that class.

In the �rst simulation scenario, shown in Figure 17, the

Agency A interactive class and the Agency B ftp class are

the only active classes. Thus, the Agency A interactive

class is essentially allocated 20% of the link bandwidth,

and the Agency B ftp class is allocated 80%. Simulations

are run for a range of values for the arrival rate of the

interactive tra�c, up to and exceeding the allocated rate

for Agency A tra�c.

In the priority-based simulation set, as long as the over-

all arrival rate of the interactive tra�c is not large, the

small bursts of interactive tra�c are transmitted at the

link bandwidth, rather than spread out over the fraction

of the bandwidth allocated to that class.

The top graph in Figure 17 shows the average queueing

delay for the interactive and ftp packets. Five forty-second

simulations were run for each arrival rate for the interac-

tive tra�c, with �ve di�erent seeds for the random num-

ber generator. The solid line shows the average over the

�ve simulations for the priority-based link-sharing imple-

mentation, and the dashed line shows the average for the

uid-ow-based link-sharing implementation. The higher

delay for the interactive tra�c during the heaviest conges-

tion results from the fact that while the interactive and ftp

classes have bu�ers of the same size, the ftp class receives

four times as much bandwidth as the interactive class.

The second graph in Figure 17 shows the average through-

put for the interactive and ftp tra�c. The dotted line

shows the throughput that the interactive tra�c would get

if its throughput matched its arrival rate.

The third graph in Figure 17 shows the fraction of ar-

riving packets dropped for the interactive and ftp traf-

�c. Because of TCP's congestion control procedures, the

ftp tra�c can be controlled with only a small number of

packet drops. For the UDP-based interactive tra�c, on the

other hand, as the average arrival rate exceeds the avail-

able bandwidth the fraction of packets dropped increases

sharply.

The bottom graph in Figure 17 shows the ratio of the

interactive packets' average queueing delay for the uid-

ow and priority-based link-sharing. For those simulations

with a moderate arrival rate for the Agency A interac-

tive tra�c (less than 200 Kbps), the average delay for the

interactive tra�c with the uid-ow link-sharing is four

to nine times the average delay with the priority-based

link-sharing, showing that for these (somewhat arti�cial)

12

(Solid line: priority-model, dashed line: fluid-flow model)
Average Arrival Rate for Interactive Traffic (in Kbps)

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
in

 s
ec

on
ds

)

100 200 300 400 500

0.
0

0.
1

0.
2

0.
3

.
.

.
.

.
.

.

.

.

.
. .

.
.

. .

.
.

.
.

.
.

. .
.

++++++++++ ++++++++++ ++++++++++ +++++++++
+

++++++++++ ++++++++++
++++++
+++
+

+++
+++
++
+
+

+
++++
+
+++
+

++
+
++++
+
++

+
++
+
+++
+++

++
++++
+

++
+

++
+
++
++
++
+

+
+
+
+
++
++
+

+

+++
+
++++
++

++
+
+++++
++

++
+++++
+++

xxxxxxxxx
x

xxxxxxxxxx xxxxxxx
xxx xxxxxx

xxxx xxxxxxxx
xx xxxxx

xxx
xx

xxxx
xxxx
xx

xxx
xxxx
xx
x

xxx
xx
xxx
x
x

xx
xxxxx
x
xx

xx
x
xxxx
x
x
x

xx
xxx
xxx
xx

xx
xxxx
x
xxx

xx
xxx
xxx
xx xx

xxx
xxx
xx

x
xxxxx
xxxx xxxxx

xxxxx

.

.

++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++

xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxx
x xxxxxxxx

xx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx

agency A interactive packets

agency B ftp packets

(Solid line: priority-model, dashed line: fluid-flow model)
Average Arrival Rate for Interactive Traffic (in Kbps)

T
hr

ou
gh

pu
t (

in
 K

bp
s)

100 200 300 400 500

0
50

0
10

00
15

00

.

.

+++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++

xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx

.

.

+++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++

xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx xxxxx

agency A interactive traffic

agency B ftp traffic

(Solid line: priority-model, dashed line: fluid-flow model)
Average Arrival Rate for Interactive Traffic (in Kbps)

F
ra

ct
io

n
of

 A
rr

iv
in

g
P

ac
ka

et
s

D
ro

pp
ed

100 200 300 400 500

0.
0

0.
05

0.
10

0.
15

0.
20

++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++
+
+

+++++
+++
++

++
+++
+
+++
+

+++

++
+++
+

+

++
+
++
+

+
+
++

+
+
+

+

+++

++

+

+

+

+++

+
+

++
+

+

+
++
+
++
++

xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxx
x

xxxxxxxxx
x

xxx
xxx
xxxx

xxx
xx
xx
xxx

xxxx
xxx
x
x

x

x
x
xxx
xx

xx

x

x

xxxx
xx

xx
x

x

xxx
x
xx

x
xx

x

xx
x

x
xx
x

++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++ ++++++++++xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx xxxxxxxxxx

agency A interactive traffic

agency B ftp traffic

(Ratio: interactive traffic delay, fluid flow model/priority model)
Average Arrival Rate for Interactive Traffic (in Kbps)

R
at

io
 o

f A
ve

ra
ge

 P
ac

ke
t D

el
ay

100 200 300 400 500

0
2

4
6

8
10

.

. .

.

.

.

.
. .

.

Figure 17: Scenario #1.

circumstances the advantages of the priority-based link-
sharing can be signi�cant.
In the second simulation scenario, with results shown

in Figure 18, tra�c is added for both real-time classes.
The Agency A real-time class consists of a single ON/OFF
connection, and the Agency B real-time class consists of
�ve ON/OFF connections. Each ON/OFF connection has
a peak rate of 64 Kbps (4% of the link bandwidth), and
an average rate at most half of the peak rate. Thus both

(Solid line: priority-model, dashed line: fluid-flow model)
Average Arrival Rate for Interactive Traffic (in Kbps)

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
in

 s
ec

on
ds

)

100 200 300 400 500

0.
0

0.
1

0.
2

0.
3

.
.

.
.

.

. .

. .

.
.

.

.
.

.

.
.

.
.

.

.
.

. . .

+++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++
++ +++++

+
+
+
+

+++
+
+++
++

+++

++
+

+
+
+

++
+

+

++

+++

+

+

+
++
++
++

++

+

+
++
++
+

+
+
++++
++
+

+

++
+
++++
+

++++
++
++
+

++++
++++
+

+

+
+++++
++

xxxxxxxxx xxxxxxx
xx xxxxxxx

x
x

xxxxxx
xxx xxxxx

xxx
x

xxx
xxxxx
x xxx

xxx
xxx

xx
xx
xx
xx
x

xx
xx
xx

x
xx

xxx
x
xx
x
x
x

xxx
xx
xxx
x

xx
xx
xxx
x
x

xx
xxx
x
xxx

x
xxx
xxx
xx

xxx
xxx
xxx

xxx
xxxxx
x

xx
xxxxxxx

.

.

+++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ ++++++++

+

xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx

.+++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx

agency A interactive packets

agency B ftp packets

realtime packets

(Solid line: priority-model, dashed line: fluid-flow model)
Average Arrival Rate for Interactive Traffic (in Kbps)

T
hr

ou
gh

pu
t (

in
 K

bp
s)

100 200 300 400 500

0
20

0
40

0
60

0
80

0
12

00

.

.
.

+++++++++
+++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ ++++++++

+ +++++++++ +++++++++ +++++++
++ +++++++++ +++++++++ +++++++++ +++++++++ ++++++++

+

xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx

.

.

+++++++++ +++++++++ +++++++++ +++++++
++

+++++++++ +++++++++ +++++++++
+++++
++++

++++++++
+

+++++++++ +++++++++
++
+++++++ +++++++++ +++++

++++ +++++++++ +++++++++ ++++++++

+

xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxx
xxx

xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxx
xx

xxxxxxx
xx

xxxxxxxx
x

xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx

.+++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ ++++++++
+ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++ +++++++++xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx xxxxxxxxx

agency A interactive traffic

agency B ftp traffic

all realtime traffic

(Ratio: interactive traffic delay, fluid flow model/priority model)
Average Arrival Rate for Interactive Traffic (in Kbps)

R
at

io
 o

f A
ve

ra
ge

 P
ac

ke
t D

el
ay

100 200 300 400 500

0
2

4
6

8
10

.
. .

.

.

.

. .
.

. . .
.

Figure 18: Scenario #2.

real-time classes are uncongested.
As Figure 18 shows, this addition of real-time tra�c does

not change the bene�ts for the interactive tra�c of having
priority over the ftp tra�c class. The low delay of the real-
time class results from its high priority and low arrival rate
(lower than the allocated bandwidth).
In the third simulation scenario, with results shown in

Figure 19, the Agency A ftp class and the Agency B inter-
active class are the only active classes. Thus, the Agency A
ftp class is essentially allocated 20% of the link bandwidth,
and the Agency B interactive class is allocated 80%. Given
these circumstances, there is little performance di�erence
between the priority-based and the uid-ow-based link-
sharing implementations. In either case the average delay
for the delay-sensitive packets is quite low.
Thus these simulations illustrate that given a higher-

priority class with bursty arrivals, coupled with a link band-
width that is signi�cantly larger than the average band-
width available to the class, the use of priorities by the
general scheduler can signi�cantly limit the average delay
for the higher-priority tra�c, without adversely a�ecting

13

(Solid line: priority-model, dashed line: fluid-flow model)
Average Arrival Rate for Interactive Traffic (in Kbps)

A
ve

ra
ge

 P
ac

ke
t D

el
ay

 (
in

 s
ec

on
ds

)

200 400 600 800 1000 1200 1400

0.
0

0.
1

0.
2

0.
3

0.
4

.++++++++++++++ ++++++ +++++++ +++++++ +++++++ ++++++ ++++++ +++++xxxxxxxxxxxxxx xxxxxx xxxxxxx xxxxxxx xxxxxxx xxxxxx xxxxxx xxxxx

.

.

. .

.

.

. .

++++++++++++++ ++++++ +++++++ +++++++ +++++++

++++++

++++++ +++
++

xxxxxxxxxxxxxx xxxxxx xxxxxxx xxxxxxx xxxxxxx

xxxxxx

xxxxxx xxxxx

agency B interactive packets

agency A ftp packets

(Solid line: priority-model, dashed line: fluid-flow model)
Average Arrival Rate for Interactive Traffic (in Kbps)

T
hr

ou
gh

pu
t (

in
 K

bp
s)

200 400 600 800 1000 1200 1400

0
50

0
10

00
15

00

. . .
.

.

.

.

. .

. . .
.

.

.

.

. .

++++++++++++++ ++++++
+++++++

+++++++

+++++++

++++++

++++++ +++++

xxxxxxxxxxxxxx xxxxxx
xxxxxxx

xxxxxxx

xxxxxxx

xxxxxx

xxxxxx xxxxx

. . .
.

.

.

.

. .

. . .
.

.

.

.

. .

++++++++++++++ ++++++
+++++++

+++++++

+++++++

++++++

++++++ +++++

xxxxxxxxxxxxxx xxxxxx
xxxxxxx

xxxxxxx

xxxxxxx

xxxxxx

xxxxxx xxxxx

agency B interactive traffic

agency A ftp traffic

Figure 19: Scenario #3.

the average bandwidth of the lower-priority tra�c. Note,
however, that these simulations make no attempt to inves-
tigate whether realistic tra�c scenarios are likely to �t this
condition of bursty arrivals for aggregate interactive tra�c.

6 Link-sharing and real-time traf-

�c

This section considers service models for real-time traf-
�c, paying particular attention to the relationship between

link-sharing goals and real-time service models. Because
link-sharing can be used to limit the bandwidth of traf-
�c classes during times of congestion, link-sharing isolates
tra�c classes from each other. This isolation can be an
important mechanism in accommodating emerging service
models in the Internet. This isolation can also be used to
protect the needs of non-real-time tra�c.
We use the term real-time tra�c to refer to tra�c that

has a (�xed or adaptive) playback time. As discussed be-
low, future gateways could use explicit admissions control
procedures for real-time tra�c.3 By non-real-time tra�c

we mean tra�c where low delay might be desirable, but
where, over reasonable time scales, the receiver waits until
packets are ultimately received. We believe that one dan-
ger in current research on providing real-time services is
to discount the needs of non-real-time tra�c (e.g., WWW,
telnet, ftp) in the Internet.

3
Current audio and video tra�c on the Mbone has an informal, un-

enforced admissions control procedure that depends on rough consensus

between the users of the Mbone.

One possibility for a scheduler at the gateway would be
to consider the needs of the real-time tra�c �rst, and to
schedule the non-real-time tra�c after the needs of the
real-time tra�c had been met, without having the sched-
uler enforce bandwidth limitations on the real-time tra�c
[SCZ93, FBZ94]. After the needs of the real-time tra�c
had been met, link-sharing mechanisms would be used to
share the remaining bandwidth among the non-real-time
classes. We argue, however, that this type of approach to
link-sharing is not su�cient. Either it could lead to starva-
tion of the non-real-time tra�c over substantial periods of
time, or it restricts the types of real-time tra�c that could
be accommodated by the network. Further, this sole re-
liance on the admissions control procedure and the policing
of real-time tra�c at the edge of the network is ill-suited to
the needs of rate-adaptive video, and is problematic given
the presence of long-range dependence in real-time tra�c
[GW94].
Many service models for real-time tra�c assume that

real-time connections would negotiate for a particular class
of service (including, for example, a certain average or max-
imum delay, or allowing for a certain statistical fraction
of packet drops, as in [FBZ94]). A slightly di�erent ser-
vice model introduced in [CSZ92] de�nes predictive service

for loss-tolerant applications with adaptive playback times.
This model was motivated in part by the emergence in the
Internet of applications for audio- and video-conferencing
such as vat, the visual audio tool, where the receiver adapts
its playback time to the delay in the network. This model
of predictive service di�ered from previous service models
in that predictive-service connections would not make an
explicit agreement with the network that the connection's
deterministic or statistical requirements about delay and
packet loss rates will be met. Instead, the admissions con-
trol procedure for predictive service is based on measure-
ments of past tra�c in the class, and these measurements
of past tra�c are used as a predictor of future tra�c. If the
prediction of future tra�c is incorrect and the predictive
service class becomes oversubscribed, then this might re-
sult in increased delay and/or drop rates for the predictive
service connections.
As an example of the need to protect non-real-time traf-

�c, when the predictive service class's predictions from past
tra�c are incorrect there can be a conict between the
link-sharing goals and the predictive service goal of imper-
fectly reliable delay bounds for predictive service tra�c.
The commitment of predictive service is that the network
will use admissions control procedures based on the past
tra�c of the network to control the admissions of predic-
tive service connections. When these predictions from past
tra�c are reliable, the predictive service packets should be
delivered with appropriately low delay. It is not possi-
ble, given such an admissions control procedure, to make
quantitative commitments about the level of service when
the predictions from past tra�c turn out to be unreliable.
One option would be for the gateway to serve as many pre-
dictive service packets as possible, given that other real-
time service commitments are met. Another option would

14

be for the gateway to restrict the predictive service tra�c

as necessary to meet the link-sharing goals, including the

link-sharing goal of allocating bandwidth for non-real-time

tra�c over some time interval.

For a link in the core of the network with frequent changes

in the number of predictive service connections, the e�ec-

tiveness of the admissions control procedure is assisted by

the large number of connections and the frequency with

which connections come and go. The assumption that past

tra�c is a reliable guideline for future tra�c is more ef-

fective when there are a large number of predictive service

connections. In addition, for those times when the pre-

dictive service admissions control procedure is overly op-

timistic, in the core of the network this can be corrected

simply by waiting a short time until some predictive service

connections terminate.

In contrast, for a moderate-bandwidth link with a mod-

erate number of predictive service connections the predic-

tive service class's admissions control procedure could be

less e�ective in protecting the link-sharing goals. In those

times when the predictive service admissions control pro-

cedure has been overly optimistic, this could be corrected

either by waiting until some of the (possible long-lived)

predictive service connections terminate, or by having the

scheduler rate-limit the predictive service tra�c, dropping

packets when the bu�er overows. Neither of these op-

tions violate the commitment of the predictive service goal,

which is to provide reliable delay bounds contingent on the

assumption that past tra�c has been a reliable indicator

of future tra�c. The second option, however, protects the

quantitative link-sharing goals as well as the predictive ser-

vice goals.

If link-sharing is used to control the bandwidth of pre-

dictive service tra�c during times of congestion, then this

possibility should be taken into account by the admissions

control procedure. In this case the predictive service admis-

sions control procedure should only admit new connections

if tra�c measurements indicate that the delay would have

been acceptable even if the class as a whole had been re-

stricted to its allocated bandwidth. One implication of this

would be not to admit new predictive service connections

when the aggregate arrival rate for the predictive service

class has been exceeding the allocated predictive service

bandwidth over relevant time intervals.

To illustrate the possible interaction between link-sharing

and predictive service, consider a gateway with a link-

sharing structure that allocates 80% of the link bandwidth

to the real-time tra�c and 20% to the non-real-time tra�c.

Assume that this is coupled with a priority-based general

scheduler that gives priority to the real-time class, along

with a conservative admissions control procedure for real-

time class that tries to limit the real-time tra�c to 50% of

the link bandwidth. In this case, the link-sharing scheduler

would only be used to regulate the bandwidth of the real-

time class if the real-time class in fact exceeded 80% of the

link bandwidth over some interval of time while the non-

real-time class had unsatis�ed demand. Given the goals of

the admissions control procedure, this is unlikely to hap-

pen. Thus the enforcement of link-sharing at the gateway

does not have to result in unacceptable service for real-time

tra�c. At the same time, the presence of the link-sharing

mechanisms ensures that the non-real-time class will not be

denied its allocated bandwidth for long intervals of time.

Like the model of predictive service, it seems likely that

additional service models will emerge to meet the require-

ments of emerging real-time applications. One possible new

application is source- or receiver-based rate-adaptive video,

with a congestion control procedure to control the connec-

tion's tra�c in response to congestion. In source-based

rate-adaptive video, the source adjusts its transmission rate

in response to feedback from the receivers, possibly using

a layered coding scheme [GV93] [BTW94]. With receiver-

based rate-adaptive video, the video source would partition

the signal into separate layers, transmitting each layer in a

separate multicast group, and receivers would unsubscribe

from higher-bandwidth layers when they are experiencing

congestion [M94].

These models of rate-adaptive video could be most easily

accommodated in a network with link-sharing, where each

gateway allocates a certain (possibly dynamic) link-sharing

bandwidth to a class of variable-bit-rate video connections.

In the absence of congestion, the video tra�c could use as

much bandwidth as desired; in the presence of congestion,

the bandwidth of the video class would be controlled, and

some fraction of arriving video packets might be dropped

at the gateway until the video's congestion control mecha-

nisms respond to reduce the congestion. In a bandwidth-

limited environment with video users that require a cer-

tain minimum bandwidth, a minimum-bandwidth guaran-

tee from the network would require an admissions control

procedure. For a class of video tra�c without requirements

of a minimum per-connection bandwidth (e.g., where the

user would rather receive 1 frame each n seconds than

receive no frames at all), admissions control procedures

would not be required.

7 Sharing and isolation revisited

In [CSZ92] the authors propose that the addition of real-

time services to packet networks be viewed in terms of the

two basic principles of isolation and sharing. In this section

we discuss the implications of isolation and sharing within

the framework of link-sharing.

By isolating classes of tra�c from each other in the net-

work, link-sharing encourages heterogeneity, and at the

same time allows connections using compatible congestion

control procedures to enjoy the advantages of cooperation

by sharing bandwidth in a single class of tra�c. Within a

leaf class, isolation between connections could be provided

by a round-robin-based scheduling algorithm such as Fair

Queueing [DKS90], or sharing between connections could

be provided by a scheduling algorithm such as FIFO.

In [CSZ92], the authors propose that a predictive-service

class should use FIFO scheduling, because FIFO schedul-

ing reduces the tail of the delay distribution, compared to

15

round-robin scheduling, by reducing the delay of packets

that arrive at the gateway at the end of a burst of pack-

ets from a single connection. Users within a predictive

service class are protected from misbehaving users by an

admissions control procedure that is coupled with policing

at the edge of the network. In this section we briey dis-

cuss some of the bene�ts of sharing for classes of best-e�ort

(i.e., non-real-time) tra�c, where the protection of the ad-

missions control procedure is replaced by the protection

of compatible end-to-end congestion control procedures for

each connection.

One advantage of sharing and cooperation within a traf-

�c class includes the implementation e�ciencies that come

from a minimum of per-connection state within the class.

A second advantage is the reduction of the tail of the delay

distribution that results from FIFO scheduling.

Other potential advantages of cooperation within tra�c

classes are less obvious, and perhaps less easy to take ad-

vantage of. For a TCP tra�c class with non-cooperative

scheduling algorithms such as Fair Queueing, the \fairness"

of the bandwidth sharing is completely local, and doesn't

take into account such factors as the number of congested

gateways or the range of roundtrip times of the di�erent

connections. For a tra�c class with a FIFO scheduling

algorithm and cooperating connections using compatible

congestion control algorithms, the bandwidth distribution

between the connections can reect such characteristics of

the overall system as the range of roundtrip times and the

number of congested gateways for each connection [F91].

Using an end-to-end congestion control algorithm, gateway

scheduling algorithm, and gateway congestion feedback al-

gorithm that exploit this interaction with system charac-

teristics could perhaps improve on the purely local fairness

of round-robin-based schedulers.

However, to take advantage of sharing within a link-

sharing class of best-e�ort tra�c, some form of monitoring

might be appropriate to ensure that all connections in the

class are in fact using acceptable congestion control proce-

dures. As an example, with RED gateways it is straight-

forward to identify connections that are using a large share

of the class bandwidth in times of congestion. Such classes

could be isolated by being reclassi�ed to a lower-priority

or lower-bandwidth class.

8 Related work

The approach to link-sharing described in this paper is

based on CBQ, an approach proposed by Van Jacobson

along with other members of the End-to-end Research Group

[CJ91]. For CBQ a single set of mechanisms is proposed to

implement link-sharing and real-time services. The mech-

anisms are a classi�er to classify arriving packets to the

appropriate class, an estimator to estimate the bandwidth

recently used by a class, a selector to determine the order

in which packets from the various classes will be sent, and

a delayer or overlimit action to schedule tra�c from classes

that have exceeded their link-sharing limits and are con-

tributing to congestion. In this paper we have introduced

the terms general scheduler and link-sharing scheduler as

conceptual tools in exploring link-sharing algorithms. The

selector in CBQ roughly corresponds to the general sched-

uler de�ned in this paper, and the delayer or overlimit

action roughly corresponds to the link-sharing scheduler

referred to in this paper.

As discussed in the Introduction, the structure of this pa-

per was motivated in part as a response to the scheduling

architecture proposed in [SCZ93]. The link-sharing scheme

proposed in [SCZ93] has been discussed in Section 6. The

approach in [SCZ93], after de�ning a service model includ-

ing both quality of service commitments to individual ows

and link-sharing commitments to collective entities, is to

de�ne a precedence ordering for the various service goals,

including the link-sharing goals, and to use this precedence

ordering to specify which commitments should be satis�ed

�rst at the gateway when commitments conict. The goals

in [SCZ93] include guaranteed real-time service, predictive

real-time service, several classes of as-soon-as-possible ser-

vice for non-real-time tra�c, and hierarchical link-sharing.

Our paper does not attempt to outline a complete service

model, but presents an alternate approach to reconciling

the quality of service commitments and the link-sharing

commitments made by the gateway. The goal of hierar-

chical link-sharing described in [SCZ93] is de�ned as ap-

proximating, as close as possible, the bandwidth shares

provided by an idealized uid ow model of instantaneous

link-sharing. There are two signi�cant di�erences between

our approach to link-sharing and the approach in [SCZ93].

First, the link-sharing goal in [SCZ93] is restricted to

providing link-sharing between entities (or classes) of the

same priority. The link-sharing goal of approximating an

idealized uid ow model does not allow for explicit link-

sharing between two classes with di�erent service priorities,

such as between a real-time and a non-real-time class, or

between a telnet and a lower-priority ftp class of tra�c.

Second, the link-sharing in [SCZ93] takes into account

the bandwidth used by real-time tra�c, but the link-sharing

algorithm does not a�ect the scheduling of the real-time

tra�c. From [SCZ93]: \Our architecture dictates that

while the link-sharing goals will a�ect the admission control

decisions for real-time ows, the link-sharing goals have no

e�ect of the scheduling of the real-time packets and only

a�ect the scheduling of elastic packets. We maintain that

this is not just one possible way of scheduling packets, but

rather the only way consistent with our service model."

[SCZ93]

In contrast, Section 6 of our paper discusses how the ex-

plicit enforcement of link-sharing goals for real-time traf-

�c can aid the gateway in serving loss-tolerant real-time

tra�c (e.g., real-time tra�c with drop-preference, or with

rate-adaptive congestion control algorithms) by controlling

the bandwidth of such tra�c while providing the bene�ts

of priority-based scheduling. Section 6 of our paper also

presents our argument that this explicit enforcement of

link-sharing goals for real-time tra�c does not violate the

goals of guaranteed or predictive real-time service, given

16

appropriate admissions control procedures, and contributes

to the exibility of the resource management architecture

in accommodating new service models.

[SCZ93] discusses the possibility of dropping a small per-

centage of \preemptable" real-time packets at the gateway

when other service commitments are in danger of being vi-

olated, but there is little discussion of how this could be ac-

complished. It is our contention that such issues should be

considered within the context of hierarchical link-sharing;

that is, the decision of whether or not to drop packets

from a particular class should depend on whether or not

that class, along with ancestor classes, is substantially con-

tributing to congestion in the network.

Previous research on link-sharing has included simula-

tion studies of Fair Queueing between user classes, where a

user class could range from an individual application to a

collection of connections associated with a particular cor-

poration or government agency [DH90].

9 Conclusions and future work

One of the strengths of the link-sharing framework pro-

posed in this paper is that this framework allows for priority-

based or other scheduling algorithms at the gateway for

real-time tra�c, while incorporating provisions to protect

the link-sharing behavior at the gateway. We argue that

considering the link-sharing goals and real-time service goals

together leads to more e�cient and productive implemen-

tations of both services.

The incorporation of link-sharing mechanisms along with

the provision of real-time services can simplify and add ro-

bustness to the provision of real-time services in the In-

ternet. Link-sharing mechanisms, by isolating classes of

the same priority and protecting lower-priority tra�c from

starvation, can add to the exibility of the Internet in

protecting best-e�ort tra�c from higher-priority real-time

tra�c, or providing appropriate isolation for new conges-

tion control protocols whose response to congestion di�ers

from that of TCP.

There are a great number of open research questions

concerning network resource management. One such open

question concerns possible scenarios for the development

and integration of new service models into the Internet.

For example, it is not plausible that, for every potential

new service model (e.g., rate-adaptive video, or perhaps re-

liable multicast?), a new link-sharing class will be opened

for that service model on every link in the network to allow

users to experiment. However, it is possible that, follow-

ing somewhat the pattern of the evolution of the Mbone,

some networks or links in the Internet might consider cre-

ating a new link-sharing class for a particular emerging

service class, using a somewhat ad hoc classi�cation based

on �elds in the packet headers. And if this turns out to be

useful, then users might request other networks to create

similar link-sharing classes, to expand the experience with

the emerging service class, before the service class is suf-

�ciently mature for full standardization. Certainly one of

the challenges in developing resource management for the

Internet will be to continue the ability to learn from work-

ing implementations deployed in a somewhat decentralized

fashion (e.g., the Mbone, or the WWW). We believe that

link-sharing mechanisms should be one of the components

in meeting this challenge.

Acknowledgements

We thank Dave Clark, Scott Shenker, Lixia Zhang, and

members of the IRTFEnd-to-end Research Group for many

discussions (and disagreements) on link-sharing and other

issues of resource management, and Jon Crowcroft, Sugih

Jamin, Greg Minshall, Vern Paxson, and Joe Spagnolo for

helpful feedback on various stages of this paper. Thanks

also go to Steven McCanne, who has done much of the work

in modifying and maintaining our simulator, and again to

Sugih Jamin, who has also made contributions to our sim-

ulator.

References

[BTW94] J.-C. Bolot, T. Turletti, and I. Wakeman, \Scal-

able Feedback Control for Multicast Video Dis-

tribution in the Internet", Proc. SIGCOMM '94,

August 1994, pp. 58-67.

[BCS94] B. Braden, D. Clark, and S. Shenker, \Inte-

grated Services in the Internet Architecture: an

Overview", Request for Comments (RFC) 1633,

IETF, June 1994.

[CJ91] D. Clark and V. Jacobson, \Flexible and E�-

cient Resource Management for Datagram Net-

works", unpublished manuscript, April 1991.

[CSZ92] D. Clark, S. Shenker, and L. Zhang, \Support-

ing Real-Time Applications in an Integrated Ser-

vices Packet Network: Architecture and Mecha-

nism", Proc. SIGCOMM '92, August 1992, p.

14-26.

[DH90] J. Davin and A. Heybey, \A Simulation Study of

Fair Queueing and Policy Enforcement", ACM

Computer Communication Review, Vol. 20 No.

5, pp. 23-29, Oct. 1990.

[DKS90] A. Demers, S. Keshav, and S. Shenker, \Analysis

and Simulation of a Fair Queueing Algorithm",

Internetworking: Research and Experience, Vol.

1, 1990, pp. 3-26.

[E94] H. Eriksson, \MBone: The Multicast Back-

bone," Communications of the ACM, August

1994, Vol.37 No.8, pp.54-60.

[FBZ94] D. Ferrari, A. Banerjea, and H. Zhang, \Net-

work Support for Multimedia: A Discussion of

the Tenet Approach", to appear in Computer

Networks and ISDN Systems, special issue on

Multimedia Networking, 1994.

[F91] S. Floyd, Connections with Multiple Congested

Gateways in Packet-Switched Networks Part 1:

One-way Tra�c, Computer Communication Re-

17

view, V.21 N.5, October 1991, pp. 30-47.

[F93] S. Floyd, \Notes on Guaranteed Service in Re-

source Management", unpublished manuscript,

March 1993.

[FJ93] S. Floyd and V. Jacobson, Random Early De-

tection Gateways for Congestion Avoidance,

IEEE/ACM Transactions on Networking, V.1

N.4, August 1993, p. 397-413.

[GV93] M. Garrett and M. Vetterli, \Joint Source/

Channel Coding of Statistically Multiplexed

Real-Time Services on Packet Networks",

IEEE/ACM Transactions on Networking, V.1

N.1, 2/93, pp. 71-80.

[GW94] M. Garrett and W. Willinger, \Analysis, Mod-

eling and Generation of Self-Similar VBR Video

Tra�c", Proc. SIGCOMM '94, August 1994, pp.

269-280.

[H94] Ho�man, D., \Implementation report on the

LBL/UCL/Sun CBQ kernel", Presentation to

the RSVP Working Group of the IETF, IETF,

July 1994. URL http://www.ietf.cnri.reston.

va.us/proceedings/94jul/tsv/rsvp.ho�man.slides.

html. \An early access experimental re-

lease of Solaris RSVP/CBQ" is at URL

ftp://playground.sun.com/pub/rsvp/solaris-

rsvp-latest.tar.Z. Warning - This consists of 15

Mbytes of compressed code!

[J88] V. Jacobson, Congestion Avoidance and Con-

trol, Proc. SIGCOMM '88, August 1988, pp.

314-329.

[JSZC92] S. Jamin, S. Shenker, L. Zhang, and D. Clark,

\An Admission Control Algorithm for Predic-

tive Real-time Service", Proceedings of the Third

International Workship on Networking and Op-

erating System Support for Digital Audio and

Video, San Diego, CA, Nov. 1992, pp. 73-91.

[M94] S. McCanne, private communication, October

1994.

[SCZ93] S. Shenker, D. Clark, and L. Zhang, \A Schedul-

ing Service Model and a Scheduling Architec-

ture for an Integrated Services Packet Network",

working paper, Xerox PARC, August 1993.

[WGCJF94] I. Wakeman, A. Ghosh, J. Crowcroft, V. Ja-

cobson, and S. Floyd, \Implementing Real Time

Packet Forwarding Policies using Streams",

Usenix 1995 Technical Conference, January

1995, New Orleans, Louisiana, pp. 71-82. URL

ftp://cs.ucl.ac.uk/darpa/usenix-cbq.ps.

[Y84] P. Young,Recursive Estimation and Time-Series

Analysis, Springer-Verlag, 1984, pp. 60-65.

[ZDESZ93] L. Zhang, S. Deering, D. Estrin, S. Shenker,

and D. Zappala, RSVP: A New Resource ReSer-

VaTion Protocol, IEEE Network, September

1993.

A Implementation in our simula-

tor

A.1 Implementation of the estimator

The estimator determines the limit status of the classes in

the class structure. This appendix describes the implemen-

tation of the estimator in our simulator; this is only one of

several methods that could be used to e�ciently implement

an estimator.

The two key parameters of the estimator are the time

constant for the estimator and the frequency with which

the estimator updates the limit status of each class. The

time constant of the estimator can be an explicit design

parameter at the gateway.

In our simulator, the gateway recomputes the limit sta-

tus for a class and its ancestor classes after the gateway

transmits a packet from that class. Our estimator uses an

exponential weighted moving average (EWMA) (as is used

in TCP to compute the average round trip delay [J88]).

This estimator looks at recent inter-packet departure times,

with a decaying weight for the more distant packets, and

indirectly computes the mean of the inter-packet departure

time, or (in the reciprocal) the mean of the packet rate.

Actual packets:

t

Packets of s bytes sent at the allocated rate of b bytes/second:

f (s,b) = s/b

s bytes

seconds

seconds

Figure 20: Variables for the computation of the limit status

of a class.

Let s be the size of the recently-transmitted packet in

bytes, let b be the link-sharing bandwidth allocated to the

class in bytes per second, and let t be the measured inter-

departure time between the packet that was just transmit-

ted and the previous packet transmitted from this class, as

shown in Figure 20. If the gateway sends packets of size s

from the class at precisely the link-sharing bandwidth b al-

located to the class, then the interdeparture time between

successive packets would be

f (s; b) = s=b

seconds. Let

di� = t � f(s; b)

be the discrepancy between the actual interdeparture time

and the \allocated" interdeparture time for that class for

packets of that size. Note that di� is negative when the

class is exceeding its link-sharing bandwidth and non-negative

otherwise. Our simulator computes avg, the exponential

18

weighted moving average of the di� variable, using the fol-

lowing equation:

avg (1� w)avg + w � di� :

With properly scaled versions of the parameters, and with

the weight w chosen as a negative power of two, avg can

be computed with one shift and two add instructions [J88].

In computing di�, the function f(s; b) could be computed

explicitly, or could be determined by using the packet size

s as an index into an array for that class.

The weight w determines the time constant of the esti-

mator. If the sending rate for a class suddenly changes,

causing the computed value of the di� variable to change

from one value to another, then it takes�1= ln(1�w) pack-

ets to be sent from that class before the computed estimate

avg moves 63% of the way from the old value of di� to the

new value [Y84]. This corresponds to a time constant of

roughly
�s

b ln(1� w)

seconds for a class sending s-byte packets at close to the

class's allocated link-sharing bandwidth of b bytes/second.

The estimator should not allow a previously-idle class

to send an overly-large burst of tra�c before that class is

estimated as overlimit. Thus, the implementation of the es-

timator should explicitly consider the maximum burst that

a class can send, after having been idle for a long period,

before being considered overlimit. With our method for im-

plementing the estimator, a class that has used only a small

fraction of its allocated bandwidth for an extended period

of time could have a large value for the parameter avg.

A previously-idle class with a link-sharing allocation of b

bytes/second and a value of A for avg could send n back-to-

back s-byte packets before being estimated as overlimit,4

for

n �

$
log(A

(s=b�s=l)
+ 1)

� log(1� w)

%
: (1)

Thus, by limiting the maximum value for the variable

avg, the estimator can limit the number of back-to-back

packets that can be sent from a previously idle class before

the class is estimated as overlimit.

The implementation of the estimator should also explic-

itly consider to what extent the limit status of a class

4This uses the fact that for a class sending back-to-back packets, the
measured interdeparture time would be s=l seconds, for l the link band-
width in bytes per second. With back-to-back packets, the computed
(negative) value for di� would be s=l�s=b seconds. After n back-to-back
packets, the value for avg would be

(1 �w)nA +

n�1X
i=0

(1 � w)iw(s=l� s=b)

= (1 �w)
n
A + (1� (1� w)

n
)(s=l � s=b):

The value for avg will still be positive as long as

A > (s=b � s=l)((1 � w)
�n

� 1):

This condition holds for values of n that satisfy Equation 1 above.

should be inuenced by previous bandwidth the class has

received in excess of its allocated share. In our simulator,

this is done with a parameter that speci�es a minimum

(negative) value for the variable avg.

Note that our estimator does not explicitly estimate the

bandwidth used by a class. The estimator is fairly accurate

in estimating whether a class is over or under its limit, but

the exact value of avg computed by the estimator can be

sensitive to things such as the packet sizes used by the

class.

An alternate implementation for the estimator would be

for the gateway every t seconds to recompute the limit

status for each class over the last T seconds. This should

be adequate for t � T . With this implementation, the

accuracy of the gateway in satisfying the link-sharing goals

is limited by the ratio between T and t. The value for T

is determined by the desired time intervals over which the

link-sharing goals should be enforced. Given T , decreasing

t increases the accuracy of the gateway in satisfying the

link-sharing goals.

For formal link-sharing, and for leaf classes in the Ancestors-

Only and the Top-Level link-sharing, the scheduler needs

to know whether or not a class is overlimit. In this case

the estimator uses the actual link-sharing allocation b of

the class in computing f(s=b), the \allocated" interdepar-

ture time between packets.

In contrast, for interior classes in the Ancestors-Only

and the Top-Level versions of link-sharing, the scheduler

needs to know whether or not the class is underlimit. For

this, the estimator uses a bandwidth b0 that is slightly less

than the link-sharing bandwidth b allocated to the class

in computing the \allocated" interdeparture time f(s; b0).

For example, in computing whether or not the root class

is underlimit, the estimator in our simulator uses a band-

width b0 slightly less than the actual bandwidth of the link

in computing the \allocated" interdeparture time f(s; b0).

In our simulator the value avg computed by the estima-

tor is used to indicate the limit status of the class through

the class's time-to-send �eld. This �eld indicates the next

time that the gateway is allowed to send a packet from that

class. For any class with avg positive, the estimator sets

the time-to-send �eld to zero, indicating that the class is

under its limit.

For a nonregulated class with avg negative (e.g., a non-

leaf class), the time-to-send �eld is set to a time x seconds

ahead of the current time, for

x = �avg
1 � w

w
+ f (s; b); (2)

where s is the size of the packet just transmitted from the

class. If the gateway waits at least x seconds before sending

another packet from the class, then the class will no longer

be over its limit.

For a regulated class with avg negative (e.g., a non-

exempt leaf class), the link-sharing scheduler sets the time-

to-send �eld for the class to f(s; b) seconds ahead of the

current time. This is the earliest time that the class will

next be able to send a packet. Thus, a regulated class is

19

never restricted by the link-sharing scheduler to less than

its allocated bandwidth, regardless of the \excess" band-

width used by that class in the past. The link-sharing

scheduler is described in Section A.3.

A.2 Implementation of the general sched-

uler

The general scheduler schedules packets from unregulated

classes at the gateway. This section describes the imple-

mentation of the general scheduler in our simulator.

In our simulator, the gateway maintains a separate queue

for each class associated with the output link. After each

packet is transmitted on the output link, the general sched-

uler decides which class can next send a packet on the

link. The general scheduler schedules packets from higher-

priority classes �rst. Within classes of the same priority,

the general scheduler uses a variant of weighted round-

robin, with weights proportional to the bandwidth alloca-

tions of the classes. The weights determine the number of

bytes that a class is allowed to send at each round. When

a class sends more than its allocated number of bytes (be-

cause packets aren't broken into byte-sized pieces), that

class's byte-allocation for the following round is correspond-

ingly reduced.

The use of weighted round-robin to service classes of the

same priority level serves two functions. The �rst function

is to ensure that each priority-one class receives its allo-

cated bandwidth even over fairly small time intervals. If at

most half of the link bandwidth is allocated to priority-one

classes, then each priority-one class with su�cient demand

is guaranteed to receive at least its allocated bandwidth in

each round of the round-robin [F93].

The second function of the weighted round-robin is to en-

sure that bandwidth is distributed to unregulated classes

of the same priority in proportion to the bandwidth alloca-

tions of those classes. As discussed in Section 2, the distri-

bution of the `excess' bandwidth among the other classes

should not be arbitrary, but should follow some appropri-

ate set of guidelines. The use of a priority-based general

scheduler with weighted round-robin within priority lev-

els results in \excess" bandwidth being distributed by the

general scheduler to the higher priority classes, with the

distribution proportional to the relative link-sharing allo-

cations of those classes.

Before the general scheduler transmits a packet from a

class, the scheduler checks the limit status of the class sim-

ply by comparing the class's time-to-send �eld with the

current time. If the time-to-send �eld is zero, then the

class is at-limit or underlimit, and the general scheduler is

allowed to transmit a packet from that class. If the time-

to-send �eld is nonzero but less than the current time, then

the class might be overlimit, but the general scheduler is

still allowed to transmit a packet from that class.

If the time-to-send �eld for a class is greater than the

current time, then the class is overlimit. In this case, the

general scheduler can only send a packet from that class

if permitted by the link-sharing guidelines. (For example,

with Ancestor-Only link-sharing, if the time-to-send �eld

for a class is greater than the current time, then the general

scheduler can only send a packet from that class if there is

an underlimit ancestor class.)

An essential issue for any proposal for a general scheduler

is that the scheduler should lend itself to e�cient imple-

mentations. [WGCJF94] describes an e�cient implemen-

tation of the class-based queueing mechanism that uses this

general scheduler.

A.3 Implementation of the link-sharing sched-

uler

The link-sharing scheduler controls the scheduling of pack-

ets from regulated classes. In our simulator the link-sharing

scheduler, working in concert with the general scheduler,

e�ectively rate-limits regulated classes to their allocated

link-sharing bandwidth.

Our simulator uses two di�erent methods for rate-limiting

a regulated class. The twomethods give similar results, but

depending on the circumstances, one or the other method

might be preferred for reasons of e�ciency. We describe

only one of the methods in this section, involving the time-

to-send �eld for a regulated class. The second method,

more appropriate for a class that is forced to remain idle

for a substantial number of packet transmission times, in-

volves temporarily removing the class from the linked-list

of classes at that priority level, and reinserting the class

later after a timer expires.

For the �rst method in our simulator, the link-sharing

scheduler sets the time-to-send �eld for a regulated class to

f(s; b) = s=b seconds ahead of the current time, given that

the packet just transmitted contained s bytes, and the class

has a link-sharing allocation of b bytes/second. The result

is that the general scheduler considers the class as overlimit

until the time indicated in the time-to-send �eld; at that

time the general scheduler is allowed to send a packet from

that class regardless of the value of avg or the limit status

of ancestor classes. If the class is still overlimit after a

packet is sent (as indicated by the avg variable maintained

for that class), then the time-to-send �eld is again set to

f(s; b) = s=b seconds ahead of the current time.

Notice that in our simulator, for a regulated class the

exact scheduling of packets from the regulated class is still

determined by the general scheduler. For a high-priority

class, given a priority-based general scheduler such as ours,

the general scheduler is likely to send a packet from a regu-

lated class soon after the time indicated in the time-to-send

�eld. For a lower-priority class, the general scheduler could

be delayed somewhat longer before sending a packet from

a regulated class. If this happens frequently, then the avg

variable might change from negative to positive, indicat-

ing that the previously-overlimit class is no longer over-

limit, and the class will no longer need to be regulated by

the link-sharing scheduler. At that point, the time-to-send

�eld for that class will be reset to zero.

20

A.4 Publically-available CBQ distributions

[WGCJF94] contains a pointer to an unsupported version

of the CBQ code, available from ftp://cs.ucl.ac.uk/darpa/

cbq.tar.Z. That distribution is derived from code that pre-

dates some of the research in this paper, and essentially

implements a variant of Ancestor-Only link-sharing that

is not described in this paper. A subsequent unsupported

version of the CBQ code is available from [H94].

B Analysis of the formal link- shar-

ing guidelines

This appendix gives some additional discussion of the for-

mal link-sharing guidelines given in Section 3. In particu-

lar, this section shows that as long as there is an unsatis�ed

leaf class, no other class will be allowed to send a packet un-

regulated if sending that packet would result in that class

having used more that its allocated link-sharing bandwidth

over the last T seconds. Section B.1 uses this to discuss

limitations on starvation for lower-priority classes.

The formal link-sharing guidelines have the following

properties:

� A class that is not overlimit will not be regulated. 2

� When all classes are satis�ed, no classes will be regu-

lated. 2

A further question concerns how long an unsatis�ed class

might have to wait before it begins to receive its allocated

bandwidth. The bandwidth received by a particular class

depends on the priority of the class, given a priority-based

general scheduler, as well as on details of the estimator,

general scheduler, and link-sharing scheduler. However,

we can make some general observations. In this discus-

sion, we assume that the link-sharing scheduler rate-limits

regulated classes to their allocated link-sharing bandwidth.

For this section, for ease of analysis, we assume that

the limit status for each class is determined by, after each

packet has been transmitted, computing the bandwidth re-

ceived by each class over the last T seconds.5 Further, for

simplicity, we assume that all packets are the same size,

and that all bandwidth allocations translate to an inte-

ger number of packets/T -seconds. We also assume that a

class is considered overlimit at time t if sending a packet at

time t would result in that class having used more than its

allocated link-sharing bandwidth over the last T seconds.

Again, for ease of analysis, assume that a class is de�ned

as having a \persistent backlog" whenever the queue for

that class is nonempty.

Wemake the following assumptions about the link-sharing

structure: the root class is allocated 100% of the link band-

width, and for each non-leaf class, the sum of the band-

width shares allocated to child classes equals the band-

width allocated to the class itself. (That is, if a class is

5We choose this method for the estimator because it seems easy to
analyze, but the link-sharing behavior is more robust with an EWMA-

based estimator. Unlike a plain moving-average estimator, an EWMA-
based estimator can place more limitations on the bandwidth that can be
used by a previously-idle class before it is declared overlimit.

allocated 50% of the link bandwidth, then the sum of the

allocations to the child classes also equals 50%.) We as-

sume that no classes are marked as bounded. We further

assume that the general scheduler is work-conserving; that

is, the link will never be idle when there is some class with

a non-empty queue.

Assume that leaf class A is unsatis�ed at time t. We

make the following additional observations:

� No class will be allowed to borrow from a non-leaf class

for as long as class A remains unsatis�ed. Thus, as long as

leaf class A remains unsatis�ed, the link-sharing structure

is e�ectively the same as one where all leaf classes are chil-

dren of the root class. Further, no classes will be allowed

to borrow even from the root class. In this case, as long as

class A remains unsatis�ed, no other class will be allowed to

send a packet unregulated if sending that packet results in

that class using more that its allocated link-sharing band-

width over the last T seconds. All regulated classes will be

rate-limited to their allocated link-sharing bandwidth. 2

B.1 Limits on starvation for lower-priority

classes

In this section, in addition to assuming that leaf class A

�rst becomes unsatis�ed at time t, we assume that all other

classes in the link-sharing structure have higher priority

that class A. We give some quantitative bounds on how

long class A could be prevented from receiving its allocated

bandwidth.

It is not necessarily the case that in the �rst T -second

interval after time t, all leaf classes will receive at most

their allocated link-sharing bandwidth. For example, a

previously-idle class B with higher priority, allocated a frac-

tion fB of the link-sharing bandwidth, could at time t send

unrestricted for fBT seconds, and after that would be rate-

limited to its allocated bandwidth. This class would receive

more than its link-sharing bandwidth over the interval [t,

t+T]. Note that this could occur only if the arrival rate of

class B or of higher-priority classes changed signi�cantly

at time t.

The following claim explores the limits on the bandwidth

that leaf classes can receive while there is an unsatis�ed leaf

class.

Claim 1 Assume that leaf class A �rst becomes unsatis�ed

at time t. For every class Ci other than class A, there is

a time ti, with t � ti < t + T , such that class Ci receives

at most its allocated bandwidth over every interval [ti, tA]

during which class A remains unsatis�ed. Further, if ti >

t, then class Ci also receives at most its allocated bandwidth

over the interval [ti � T , ti], where ti � T < t.

Proof: Case 1: First, consider a class C that is over-

limit at time t. Then, over every interval [t, tA] during

which class A remains unsatis�ed, class C receives at most

its allocated bandwidth.

Case 2: Next, consider a class C that is not overlimit at

time t, and assume that class C �rst becomes overlimit later

at time t2. Because class C begins to be rate-limited to its

21

allocated bandwidth at time t
2
, and after time t

2
only gets

to send unregulated if it is not overlimit, therefore for every
interval [t2, tA] during which class A remains unsatis�ed,
class C receives at most its allocated bandwidth. Further,
because class C is not overlimit at any time in the interval
[t, t2], class C received at most its allocated bandwidth
over every T -second interval that ends at a time between t

and t2, inclusive.
Case 2a: Assume that class C �rst becomes overlimit at

time t
2
� t+T . Then class C received at most its allocated

bandwidth over every T -second interval in [t, t2], and over
the interval [t2, tA]. Therefore, over every interval [t, tA]
during which class A remains unsatis�ed, class C receives
at most its allocated bandwidth.
Case 2b: Assume that class C �rst becomes overlimit

at time t2 < t + T . Then class C received at most its
allocated bandwidth over the T -second interval [t2 � T ,
t2], and over every interval [t2, tA] during which class A
remains unsatis�ed. 2

: Class C2 : Class A

: Class C3: Class C1

T/4 T/3 T/2
time t time t+T+T/12

A C1 C2

A

C3

Figure 21: Class A denied bandwidth for T +T=12 seconds

Example: limited starvation for class A. As an ex-
ample of the limits on the starvation that is possible for
a lower-priority class, Figure 21 shows the bandwidth re-
ceived on a link with a link-sharing structure with four
classes, C1, C2, C3, and A, with priorities 1, 2, 3, and 4
respectively, with each class allocated 1/4 of the link band-
width. Class A had been receiving all of the link band-
width, and then at time t classes C

1
, C

2
, and C

3
each

begin to have high demand. Class C1 receives all of the
link bandwidth for T=4 seconds, after which it is regulated
to its link-sharing bandwidth. Similarly, classes C2 and C3

both get to transmit as shown in Figure 21, and class A

receives no bandwidth for more than T seconds. And it is
possible to construct pathological link-sharing allocations
and arrival patterns where class A could wait signi�cantly
longer before receiving any bandwidth. 2
Thus, depending on the scheduling algorithms, and given

n classes in the link-sharing structure with link-sharing al-
locations p

1
; ::; pn (where class A is assigned link-sharing

allocation pn), it is possible for class A to receive no band-
width at all for

n�1X

i=1

pi

1�
Pi�1

j=1 pj
T

seconds after time t. As an example, if each of the n classes
is allocated a fraction 1=n of the link bandwidth, and class
A has the lowest priority, then for n = 1000, class A could
receive no bandwidth at all for 6:5T seconds, given arrival

patterns planned by an adversary.
However, even this limited starvation of lower-priority

classes is dependent on a pathological arrival process for
the higher-priority classes. If the arrival process for higher-
priority classes did not abruptly change at time t, then
classes that are overlimit at time t would continue to be
rate-limited, and classes that are underlimit at time t would
continue to be underlimit. Thus, if the arrival rates for
other classes did not abruptly change at time t, class A

would begin to receive its link-sharing bandwidth soon af-
ter time t.
Note that the delay that a lower-priority class can receive

is more limited if, as in the implementation in our simu-
lator, the estimator explicitly limits the bandwidth that a
previously-idle class can receive before being declared over-
limit.
Further note that this potential for limited starvation

only applies to classes that are not of the highest prior-
ity level. A class of the highest-priority is never forced to
wait for higher-priority classes. The bandwidth received
by the highest-priority classes is determined by the general
scheduler, with the only constraint that the class might
be rate-allocated to its link-sharing bandwidth in times of
congestion.

C A pathological case for Ancestor-

Only link-sharing

In this section we examine a pathological case that can
occur in Ancestor-Only link-sharing, given an adversary
who is controlling the tra�c arrival pattern in order to
deny bandwidth to a particular class. The example in this
section also helps explain the rule in formal link-sharing
that a class cannot borrow from a not-overlimit ancestor
at level i if there is an unsatis�ed class at level i� 1, even
if that class is not a descendant of the ancestor class.

A B

priority, link−sharing bandwidth

C

A1 A2 B1 B2 C1

1, p1 2, p2 1, p3 2, p4 1, p5

C3

3, p6

link

Figure 22: Example link-sharing structure.

Consider the link-sharing structure in Figure 22, and
consider a priority-based general scheduler with Ancestor-
Only link-sharing. Further, consider the following (highly
unrealistic) packet arrival process. Assume that, at time t,
packets arrive for both class A1 and class C3, and further
assume, for simplicity, that the link class is at-limit, hav-
ing transmitted only packets from class C1 in the last T

22

seconds. Class A1 is allowed to transmit for p1T seconds

because it is not overlimit, and then for p2T additional

seconds because the parent class A is underlimit. Because

the root class is at-limit, class A1 is not allowed to borrow

from the root class. Assume, conveniently enough, that no

more packets arrive for class A1, and that class A1 now

has an empty queue.

Assume that packets then arrive for class A2. Class A2

is allowed to transmit for p2T seconds. Again assume that

no more packets arrive for class A2, and that after p2T

seconds class A2 again has an empty queue.

The same process repeats for Agency B. Class B1 trans-

mits for (p3 + p4)T seconds, and then class B2 transmits

for p4T seconds. Then packets arrive for class C1, which

by that time is underlimit, and class C1 transmits for p5T

seconds.

time t
A2, .4TA1, .45 T B1, .45T B2, .4T A1, .45TC1

A1 A2 A1C1 B2 B2

: Class A1

: Class A2

: Class B1

: Class B2

: Class C1

Figure 23: Class C2 denied bandwidth inde�nitely, with

Ancestor-Only link-sharing.

Consider the following allocations: Let p1; p3; p5, and p6
be 0.05, and let p2 and p4 each be 0.40. The bandwidth on

the congested link is shown in Figure 23, with classes A1,

A2, B1, and B2 transmitting in turn after time t. Then,

after C1 has transmitted for p5T seconds, Agency A is

no longer overlimit (because no packets from Agency A

have been transmitted in the last (p3 + 2p4 + p5)T = 0:9T

seconds). If this pathological tra�c arrival process repeats,

then the cycle continues to repeat itself. Class A1 again

sends for (p1+p2)T seconds, at which point Agency A again

becomes overlimit. Then class A2 sends for p2T seconds,

and then Agency B classes send, and so on, and class C3,

being of lower priority, never sets to send any packets.

We emphasize that this pathological case requires Ancestor-

Only link-sharing and a highly arti�cial packet arrival pat-

tern, and is helped by a moving-average estimator without

exponential decay. For example, consider what would hap-

pen if, with a more realistic packet arrival pattern, packets

continued to arrive for class A1 after A1 had transmitted

packets for (p1 + p2)T seconds. Class A1 would be regu-

lated to its link-sharing allocation of a fraction p1 of the

link bandwidth, and the cycle of class A1 receiving all of

the link bandwidth, and then receiving none of the link

bandwidth, would be broken. Similarly, if classes A2, B1,

and B2 continued to have arriving packets after their bursts

of using the link bandwidth, then those classes also would

continue to be regulated to their link-sharing allocations,

and there would be no starvation of class C3.

Note that the pathological behavior described above can-

not occur with the formal link-sharing guidelines, because

in that case children are not allowed to borrow from parent

classes while a leaf class is unsatis�ed.

23

